基于时间序列和改进的反向传播神经网络的区域电能替代电位预测

IF 4.6 Q1 OPTICS
Ziwen Cai, Yutao Xu, Yong Xiao, Dunhui Chen, Yun Zhao, Zhukui Tan
{"title":"基于时间序列和改进的反向传播神经网络的区域电能替代电位预测","authors":"Ziwen Cai, Yutao Xu, Yong Xiao, Dunhui Chen, Yun Zhao, Zhukui Tan","doi":"10.1088/1742-6596/2636/1/012029","DOIUrl":null,"url":null,"abstract":"Abstract A combined time-series-based regression forecasting and GRA-IPSO-BP structure is proposed to forecast the electricity replacement forecasts using a time series model based on the triple exponential smoothing forecasting method. The forecast results are corrected using the GRA-IPSO-BP structure. The results of the algorithm show that using a combination of time series and GRA-IPSO-BP structure can significantly improve the forecasting accuracy of electricity replacement compared to single-method forecasting.","PeriodicalId":44008,"journal":{"name":"Journal of Physics-Photonics","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regional electrical energy substitution potential prediction based on time series and improved back propagation neural network\",\"authors\":\"Ziwen Cai, Yutao Xu, Yong Xiao, Dunhui Chen, Yun Zhao, Zhukui Tan\",\"doi\":\"10.1088/1742-6596/2636/1/012029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A combined time-series-based regression forecasting and GRA-IPSO-BP structure is proposed to forecast the electricity replacement forecasts using a time series model based on the triple exponential smoothing forecasting method. The forecast results are corrected using the GRA-IPSO-BP structure. The results of the algorithm show that using a combination of time series and GRA-IPSO-BP structure can significantly improve the forecasting accuracy of electricity replacement compared to single-method forecasting.\",\"PeriodicalId\":44008,\"journal\":{\"name\":\"Journal of Physics-Photonics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics-Photonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1742-6596/2636/1/012029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics-Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1742-6596/2636/1/012029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要提出了一种基于时间序列的回归预测与GRA-IPSO-BP结构相结合的预测方法,利用基于三指数平滑预测方法的时间序列模型预测电力替代预测。利用GRA-IPSO-BP结构对预测结果进行了校正。算法结果表明,与单一方法预测相比,将时间序列与GRA-IPSO-BP结构相结合可以显著提高电力替代的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regional electrical energy substitution potential prediction based on time series and improved back propagation neural network
Abstract A combined time-series-based regression forecasting and GRA-IPSO-BP structure is proposed to forecast the electricity replacement forecasts using a time series model based on the triple exponential smoothing forecasting method. The forecast results are corrected using the GRA-IPSO-BP structure. The results of the algorithm show that using a combination of time series and GRA-IPSO-BP structure can significantly improve the forecasting accuracy of electricity replacement compared to single-method forecasting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.70
自引率
0.00%
发文量
27
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信