{"title":"圆柱形锂离子电池表面应变的温度补偿方法","authors":"Rong Yao Sun, Lei Mao","doi":"10.1088/1742-6596/2636/1/012002","DOIUrl":null,"url":null,"abstract":"Abstract In order to ensure the safe operation of lithium-ion batteries, real-time monitoring of battery status is necessary. The surface strain signal of lithium-ion batteries has the potential to evaluate the battery’s state, but it is significantly affected by temperature. Generally, measuring the battery surface temperature and the thermal expansion coefficient can be performed to quantify and eliminate the influence of temperature on strain, but this increases the cost and complexity of strain measurement. This article proposes a method that eliminates the need to measure the battery temperature and material parameters. By simultaneously measuring the circumferential and axial strains on the battery surface and calculating their difference, the influence of temperature on strain can be minimized. Furthermore, the effectiveness of the proposed method is experimentally tested. Results demonstrate that after applying temperature compensation to commercial lithium-ion batteries, the influence of temperature on strain can be reduced from 16.4 ppm/°C to 1.7 ppm/°C. The strain no longer exhibits sensitivity to current, making it more suitable for evaluating the state of lithium-ion batteries.","PeriodicalId":44008,"journal":{"name":"Journal of Physics-Photonics","volume":"23 4","pages":"0"},"PeriodicalIF":4.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Temperature Compensation Method for Surface Strain of Cylindrical Lithium-ion Batteries\",\"authors\":\"Rong Yao Sun, Lei Mao\",\"doi\":\"10.1088/1742-6596/2636/1/012002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In order to ensure the safe operation of lithium-ion batteries, real-time monitoring of battery status is necessary. The surface strain signal of lithium-ion batteries has the potential to evaluate the battery’s state, but it is significantly affected by temperature. Generally, measuring the battery surface temperature and the thermal expansion coefficient can be performed to quantify and eliminate the influence of temperature on strain, but this increases the cost and complexity of strain measurement. This article proposes a method that eliminates the need to measure the battery temperature and material parameters. By simultaneously measuring the circumferential and axial strains on the battery surface and calculating their difference, the influence of temperature on strain can be minimized. Furthermore, the effectiveness of the proposed method is experimentally tested. Results demonstrate that after applying temperature compensation to commercial lithium-ion batteries, the influence of temperature on strain can be reduced from 16.4 ppm/°C to 1.7 ppm/°C. The strain no longer exhibits sensitivity to current, making it more suitable for evaluating the state of lithium-ion batteries.\",\"PeriodicalId\":44008,\"journal\":{\"name\":\"Journal of Physics-Photonics\",\"volume\":\"23 4\",\"pages\":\"0\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics-Photonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1742-6596/2636/1/012002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics-Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1742-6596/2636/1/012002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
A Novel Temperature Compensation Method for Surface Strain of Cylindrical Lithium-ion Batteries
Abstract In order to ensure the safe operation of lithium-ion batteries, real-time monitoring of battery status is necessary. The surface strain signal of lithium-ion batteries has the potential to evaluate the battery’s state, but it is significantly affected by temperature. Generally, measuring the battery surface temperature and the thermal expansion coefficient can be performed to quantify and eliminate the influence of temperature on strain, but this increases the cost and complexity of strain measurement. This article proposes a method that eliminates the need to measure the battery temperature and material parameters. By simultaneously measuring the circumferential and axial strains on the battery surface and calculating their difference, the influence of temperature on strain can be minimized. Furthermore, the effectiveness of the proposed method is experimentally tested. Results demonstrate that after applying temperature compensation to commercial lithium-ion batteries, the influence of temperature on strain can be reduced from 16.4 ppm/°C to 1.7 ppm/°C. The strain no longer exhibits sensitivity to current, making it more suitable for evaluating the state of lithium-ion batteries.