无界算子s谱上的调和和多解析泛函演算

IF 1.1 2区 数学 Q1 MATHEMATICS
Fabrizio Colombo, Antonino De Martino, Stefano Pinton
{"title":"无界算子s谱上的调和和多解析泛函演算","authors":"Fabrizio Colombo, Antonino De Martino, Stefano Pinton","doi":"10.1007/s43037-023-00304-y","DOIUrl":null,"url":null,"abstract":"Abstract Harmonic and polyanalytic functional calculi have been recently defined for bounded commuting operators. Their definitions are based on the Cauchy formula of slice hyperholomorphic functions and on the factorization of the Laplace operator in terms of the Cauchy–Fueter operator $${\\mathcal{D}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>D</mml:mi> </mml:math> and of its conjugate $$\\overline{{\\mathcal{D}}}.$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mover> <mml:mi>D</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> <mml:mo>.</mml:mo> </mml:mrow> </mml:math> Thanks to the Fueter extension theorem, when we apply the operator $${\\mathcal{D}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>D</mml:mi> </mml:math> to slice hyperholomorphic functions, we obtain harmonic functions and via the Cauchy formula of slice hyperholomorphic functions, we establish an integral representation for harmonic functions. This integral formula is used to define the harmonic functional calculus on the S -spectrum. Another possibility is to apply the conjugate of the Cauchy–Fueter operator to slice hyperholomorphic functions. In this case, with a similar procedure we obtain the class of polyanalytic functions, their integral representation, and the associated polyanalytic functional calculus. The aim of this paper is to extend the harmonic and the polyanalytic functional calculi to the case of unbounded operators and to prove some of the most important properties. These two functional calculi belong to so called fine structures on the S -spectrum in the quaternionic setting. Fine structures on the S -spectrum associated with Clifford algebras constitute a new research area that deeply connects different research fields such as operator theory, harmonic analysis, and hypercomplex analysis.","PeriodicalId":55400,"journal":{"name":"Banach Journal of Mathematical Analysis","volume":"15 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Harmonic and polyanalytic functional calculi on the S-spectrum for unbounded operators\",\"authors\":\"Fabrizio Colombo, Antonino De Martino, Stefano Pinton\",\"doi\":\"10.1007/s43037-023-00304-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Harmonic and polyanalytic functional calculi have been recently defined for bounded commuting operators. Their definitions are based on the Cauchy formula of slice hyperholomorphic functions and on the factorization of the Laplace operator in terms of the Cauchy–Fueter operator $${\\\\mathcal{D}}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>D</mml:mi> </mml:math> and of its conjugate $$\\\\overline{{\\\\mathcal{D}}}.$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mover> <mml:mi>D</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> <mml:mo>.</mml:mo> </mml:mrow> </mml:math> Thanks to the Fueter extension theorem, when we apply the operator $${\\\\mathcal{D}}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>D</mml:mi> </mml:math> to slice hyperholomorphic functions, we obtain harmonic functions and via the Cauchy formula of slice hyperholomorphic functions, we establish an integral representation for harmonic functions. This integral formula is used to define the harmonic functional calculus on the S -spectrum. Another possibility is to apply the conjugate of the Cauchy–Fueter operator to slice hyperholomorphic functions. In this case, with a similar procedure we obtain the class of polyanalytic functions, their integral representation, and the associated polyanalytic functional calculus. The aim of this paper is to extend the harmonic and the polyanalytic functional calculi to the case of unbounded operators and to prove some of the most important properties. These two functional calculi belong to so called fine structures on the S -spectrum in the quaternionic setting. Fine structures on the S -spectrum associated with Clifford algebras constitute a new research area that deeply connects different research fields such as operator theory, harmonic analysis, and hypercomplex analysis.\",\"PeriodicalId\":55400,\"journal\":{\"name\":\"Banach Journal of Mathematical Analysis\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Banach Journal of Mathematical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s43037-023-00304-y\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Banach Journal of Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s43037-023-00304-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

摘要最近定义了有界交换算子的调和泛函微积分和多解析泛函微积分。它们的定义是基于片超纯函数的柯西公式和拉普拉斯算子的柯西-傅里叶算子$${\mathcal{D}}$$ D及其共轭$$\overline{{\mathcal{D}}}.$$ D¯的因式分解。利用傅里叶扩展定理,将算子$${\mathcal{D}}$$ D应用于片超全纯函数,得到了调和函数,并利用片超全纯函数的柯西公式,建立了调和函数的积分表示。该积分公式用于定义S谱上的调和泛函演算。另一种可能性是将Cauchy-Fueter算子的共轭应用于切片超纯函数。在这种情况下,我们用类似的方法得到了一类多解析函数,它们的积分表示,以及相关的多解析泛函演算。本文的目的是将调和泛函微积分和多解析泛函微积分推广到无界算子的情况,并证明了其中一些最重要的性质。这两种功能结石在四元数设置中属于S谱上的所谓精细结构。与Clifford代数相关的S谱上的精细结构构成了一个新的研究领域,它将算子理论、调和分析、超复分析等不同的研究领域紧密地联系在一起。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Harmonic and polyanalytic functional calculi on the S-spectrum for unbounded operators

Harmonic and polyanalytic functional calculi on the S-spectrum for unbounded operators
Abstract Harmonic and polyanalytic functional calculi have been recently defined for bounded commuting operators. Their definitions are based on the Cauchy formula of slice hyperholomorphic functions and on the factorization of the Laplace operator in terms of the Cauchy–Fueter operator $${\mathcal{D}}$$ D and of its conjugate $$\overline{{\mathcal{D}}}.$$ D ¯ . Thanks to the Fueter extension theorem, when we apply the operator $${\mathcal{D}}$$ D to slice hyperholomorphic functions, we obtain harmonic functions and via the Cauchy formula of slice hyperholomorphic functions, we establish an integral representation for harmonic functions. This integral formula is used to define the harmonic functional calculus on the S -spectrum. Another possibility is to apply the conjugate of the Cauchy–Fueter operator to slice hyperholomorphic functions. In this case, with a similar procedure we obtain the class of polyanalytic functions, their integral representation, and the associated polyanalytic functional calculus. The aim of this paper is to extend the harmonic and the polyanalytic functional calculi to the case of unbounded operators and to prove some of the most important properties. These two functional calculi belong to so called fine structures on the S -spectrum in the quaternionic setting. Fine structures on the S -spectrum associated with Clifford algebras constitute a new research area that deeply connects different research fields such as operator theory, harmonic analysis, and hypercomplex analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
8.30%
发文量
67
审稿时长
>12 weeks
期刊介绍: The Banach Journal of Mathematical Analysis (Banach J. Math. Anal.) is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Banach J. Math. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and operator theory and all modern related topics. Banach J. Math. Anal. normally publishes survey articles and original research papers numbering 15 pages or more in the journal’s style. Shorter papers may be submitted to the Annals of Functional Analysis or Advances in Operator Theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信