通过水库配置最大化有效水量——以印度尼西亚玛琅市为例

Q4 Engineering
G. Samudro, H. Samudro, S. Mangkoedihardjo
{"title":"通过水库配置最大化有效水量——以印度尼西亚玛琅市为例","authors":"G. Samudro, H. Samudro, S. Mangkoedihardjo","doi":"10.4314/njtd.v20i3.1616","DOIUrl":null,"url":null,"abstract":"All forms of water supply systems had unique characteristics of idle capacity. However, achieving a sustainable water supply over the long term could not eliminate idle capacity. This paper discussed methods for providing efficient capacity without compromising long-term water requirements. The objective of efficient capacity was to reduce idle water capacity and water-carrying infrastructure. This study method reviews previous research results with an in-depth case of a piped water supply system in an urban area. The assessment method referred to the pattern of water demand by consumers. Fluctuations in water demand determined the dimensions of all water supply system components. The results of this study showed that water distribution determines the minimum idle capacity, which directs the need for priority areas for efficient capacity and opens reservoir placement options. Under these priority areas, a decentralised reservoir position resulted in an efficient system dimension. The closer the reservoir was to the consumer, the smaller the idle capacity, which was the contribution of the onsite reservoir. The critical implementation was based on the flexibility of the phasing of water supply and infrastructure. The flexibility addressed the use of flow rates for a certain period, diversification of water sources, and system configuration that determines the dimensions of the infrastructure and maximising utilisation.","PeriodicalId":31273,"journal":{"name":"Nigerian Journal of Technological Development","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximising efficient water capacity through reservoir configuration with a case study for Malang City of Indonesia\",\"authors\":\"G. Samudro, H. Samudro, S. Mangkoedihardjo\",\"doi\":\"10.4314/njtd.v20i3.1616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"All forms of water supply systems had unique characteristics of idle capacity. However, achieving a sustainable water supply over the long term could not eliminate idle capacity. This paper discussed methods for providing efficient capacity without compromising long-term water requirements. The objective of efficient capacity was to reduce idle water capacity and water-carrying infrastructure. This study method reviews previous research results with an in-depth case of a piped water supply system in an urban area. The assessment method referred to the pattern of water demand by consumers. Fluctuations in water demand determined the dimensions of all water supply system components. The results of this study showed that water distribution determines the minimum idle capacity, which directs the need for priority areas for efficient capacity and opens reservoir placement options. Under these priority areas, a decentralised reservoir position resulted in an efficient system dimension. The closer the reservoir was to the consumer, the smaller the idle capacity, which was the contribution of the onsite reservoir. The critical implementation was based on the flexibility of the phasing of water supply and infrastructure. The flexibility addressed the use of flow rates for a certain period, diversification of water sources, and system configuration that determines the dimensions of the infrastructure and maximising utilisation.\",\"PeriodicalId\":31273,\"journal\":{\"name\":\"Nigerian Journal of Technological Development\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nigerian Journal of Technological Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4314/njtd.v20i3.1616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nigerian Journal of Technological Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/njtd.v20i3.1616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

各种形式的供水系统都有其独特的闲置能力。然而,实现长期可持续的供水并不能消除闲置的能力。本文讨论了在不影响长期用水需求的情况下提供有效容量的方法。有效能力的目标是减少闲置的供水能力和供水基础设施。本研究方法回顾了以往的研究成果,并以城市管道供水系统为例进行了深入的研究。评估方法参照了消费者的用水需求模式。用水需求的波动决定了所有供水系统部件的尺寸。研究结果表明,水量分布决定了最小闲置容量,从而指导了高效容量优先区域的需求,并开辟了水库布局选择。在这些优先区域,分散的储层位置产生了有效的系统尺寸。水库离用户越近,闲置容量越小,这是现场水库的贡献。关键的执行是基于供水和基础设施分期的灵活性。这种灵活性解决了一定时期内流量的使用、水源的多样化以及决定基础设施尺寸和最大化利用率的系统配置问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximising efficient water capacity through reservoir configuration with a case study for Malang City of Indonesia
All forms of water supply systems had unique characteristics of idle capacity. However, achieving a sustainable water supply over the long term could not eliminate idle capacity. This paper discussed methods for providing efficient capacity without compromising long-term water requirements. The objective of efficient capacity was to reduce idle water capacity and water-carrying infrastructure. This study method reviews previous research results with an in-depth case of a piped water supply system in an urban area. The assessment method referred to the pattern of water demand by consumers. Fluctuations in water demand determined the dimensions of all water supply system components. The results of this study showed that water distribution determines the minimum idle capacity, which directs the need for priority areas for efficient capacity and opens reservoir placement options. Under these priority areas, a decentralised reservoir position resulted in an efficient system dimension. The closer the reservoir was to the consumer, the smaller the idle capacity, which was the contribution of the onsite reservoir. The critical implementation was based on the flexibility of the phasing of water supply and infrastructure. The flexibility addressed the use of flow rates for a certain period, diversification of water sources, and system configuration that determines the dimensions of the infrastructure and maximising utilisation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nigerian Journal of Technological Development
Nigerian Journal of Technological Development Engineering-Engineering (miscellaneous)
CiteScore
1.00
自引率
0.00%
发文量
40
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信