动态过程模拟中不同近似的组合方法

Olga Dmytriyeva
{"title":"动态过程模拟中不同近似的组合方法","authors":"Olga Dmytriyeva","doi":"10.20998/2411-0558.2023.01.01","DOIUrl":null,"url":null,"abstract":"The paper investigates methods of composing difference approximations for forming single- and multi-step parallel difference schemes of a given order, oriented to the numerical solution of the Cauchy problem for both ordinary differential equations and evolutionary partial differential equations. The proposed discrete approximations allow us to vary the order of the error, departing from the maximum possible on a fixed set of nodes, but ensuring absolute or A-α stability of numerical solutions. The study of the properties of the proposed transition matrices connecting the reference and design points allows us to determine the nature of the stability of the generated difference schemes according to the initial data and the right-hand sides. Automatic generation of stable difference schemes allows taking into account the topology of the processor field, and thus, using the available computing resource with maximum efficiency. Figs.: 10. Refs.: 18 titles.","PeriodicalId":32537,"journal":{"name":"Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Methods of composition of different approximations in the simulation of dynamic processes\",\"authors\":\"Olga Dmytriyeva\",\"doi\":\"10.20998/2411-0558.2023.01.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper investigates methods of composing difference approximations for forming single- and multi-step parallel difference schemes of a given order, oriented to the numerical solution of the Cauchy problem for both ordinary differential equations and evolutionary partial differential equations. The proposed discrete approximations allow us to vary the order of the error, departing from the maximum possible on a fixed set of nodes, but ensuring absolute or A-α stability of numerical solutions. The study of the properties of the proposed transition matrices connecting the reference and design points allows us to determine the nature of the stability of the generated difference schemes according to the initial data and the right-hand sides. Automatic generation of stable difference schemes allows taking into account the topology of the processor field, and thus, using the available computing resource with maximum efficiency. Figs.: 10. Refs.: 18 titles.\",\"PeriodicalId\":32537,\"journal\":{\"name\":\"Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20998/2411-0558.2023.01.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20998/2411-0558.2023.01.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文针对常微分方程和进化偏微分方程的柯西问题的数值解,研究了形成给定阶的单步和多步并行差分格式的差分逼近的组成方法。所提出的离散近似允许我们改变误差的顺序,在一组固定的节点上离开最大可能,但确保数值解的绝对或a -α稳定性。研究连接参考点和设计点的过渡矩阵的性质,使我们能够根据初始数据和右侧确定生成的差分格式的稳定性的性质。稳定差分格式的自动生成允许考虑处理器域的拓扑结构,从而最大限度地利用可用的计算资源。无花果。: 10. 参考文献。: 18个标题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Methods of composition of different approximations in the simulation of dynamic processes
The paper investigates methods of composing difference approximations for forming single- and multi-step parallel difference schemes of a given order, oriented to the numerical solution of the Cauchy problem for both ordinary differential equations and evolutionary partial differential equations. The proposed discrete approximations allow us to vary the order of the error, departing from the maximum possible on a fixed set of nodes, but ensuring absolute or A-α stability of numerical solutions. The study of the properties of the proposed transition matrices connecting the reference and design points allows us to determine the nature of the stability of the generated difference schemes according to the initial data and the right-hand sides. Automatic generation of stable difference schemes allows taking into account the topology of the processor field, and thus, using the available computing resource with maximum efficiency. Figs.: 10. Refs.: 18 titles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
10
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信