流动规则系数的实现

IF 0.6 4区 数学 Q3 MATHEMATICS
Luis Barreira, Claudia Valls
{"title":"流动规则系数的实现","authors":"Luis Barreira, Claudia Valls","doi":"10.1093/qmath/haad020","DOIUrl":null,"url":null,"abstract":"Abstract We establish sharp relations between several regularity coefficients for flows generated by non-autonomous differential equations. We verify that these relations are sharp by showing that all possible values of the regularity coefficients satisfying these relations are attained by some linear equation with bounded piecewise-continuous coefficient matrix. In addition, we introduce two new regularity coefficients and we obtain sharp relations between these and other coefficients.","PeriodicalId":54522,"journal":{"name":"Quarterly Journal of Mathematics","volume":"79 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Realization of regularity coefficients for flows\",\"authors\":\"Luis Barreira, Claudia Valls\",\"doi\":\"10.1093/qmath/haad020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We establish sharp relations between several regularity coefficients for flows generated by non-autonomous differential equations. We verify that these relations are sharp by showing that all possible values of the regularity coefficients satisfying these relations are attained by some linear equation with bounded piecewise-continuous coefficient matrix. In addition, we introduce two new regularity coefficients and we obtain sharp relations between these and other coefficients.\",\"PeriodicalId\":54522,\"journal\":{\"name\":\"Quarterly Journal of Mathematics\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/qmath/haad020\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/qmath/haad020","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要建立了由非自治微分方程产生的流动的几个正则系数之间的尖锐关系。通过证明满足这些关系的正则系数的所有可能值都可以由具有有界分段连续系数矩阵的线性方程得到,从而证明了这些关系是尖锐的。此外,我们引入了两个新的正则系数,并得到了它们与其他系数之间的密切关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Realization of regularity coefficients for flows
Abstract We establish sharp relations between several regularity coefficients for flows generated by non-autonomous differential equations. We verify that these relations are sharp by showing that all possible values of the regularity coefficients satisfying these relations are attained by some linear equation with bounded piecewise-continuous coefficient matrix. In addition, we introduce two new regularity coefficients and we obtain sharp relations between these and other coefficients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
36
审稿时长
6-12 weeks
期刊介绍: The Quarterly Journal of Mathematics publishes original contributions to pure mathematics. All major areas of pure mathematics are represented on the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信