基于变分模态分解和采样波动分析的数字稳像方法

{"title":"基于变分模态分解和采样波动分析的数字稳像方法","authors":"","doi":"10.25236/ajcis.2023.060802","DOIUrl":null,"url":null,"abstract":"Unintentional motions often cause cameras to produce shaky images, which is a significant source of inter-frame blur and video quality decline. To ad-dress this issue, we present a digital image stabilization approach based on variational mode decomposition (VMD) and sampling fluctuation analysis (SFA) to generate stable video sequences. Our method first estimates the global motion vector (GMV) from a video sequence using the speeded up robust features (SURF) algorithm. We then decompose the GMV into various modes using VMD to separate jitter motions from intentional ones. Here, SFA is applied to distinguish different modes based on their unique structural characteristics. We evaluate our proposed method in complex scenarios by comparing it with several existing methods. Our experimental results demonstrate that VMD outperforms other stabilization techniques under comparable conditions.","PeriodicalId":387664,"journal":{"name":"Academic Journal of Computing & Information Science","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Digital image stabilization method based on variational mode decomposition and sampling fluctuation analysis\",\"authors\":\"\",\"doi\":\"10.25236/ajcis.2023.060802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unintentional motions often cause cameras to produce shaky images, which is a significant source of inter-frame blur and video quality decline. To ad-dress this issue, we present a digital image stabilization approach based on variational mode decomposition (VMD) and sampling fluctuation analysis (SFA) to generate stable video sequences. Our method first estimates the global motion vector (GMV) from a video sequence using the speeded up robust features (SURF) algorithm. We then decompose the GMV into various modes using VMD to separate jitter motions from intentional ones. Here, SFA is applied to distinguish different modes based on their unique structural characteristics. We evaluate our proposed method in complex scenarios by comparing it with several existing methods. Our experimental results demonstrate that VMD outperforms other stabilization techniques under comparable conditions.\",\"PeriodicalId\":387664,\"journal\":{\"name\":\"Academic Journal of Computing & Information Science\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Academic Journal of Computing & Information Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25236/ajcis.2023.060802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Journal of Computing & Information Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25236/ajcis.2023.060802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无意的运动经常导致相机产生抖动的图像,这是帧间模糊和视频质量下降的重要来源。为了解决这个问题,我们提出了一种基于变分模态分解(VMD)和采样波动分析(SFA)的数字图像稳定方法来生成稳定的视频序列。我们的方法首先使用加速鲁棒特征(SURF)算法从视频序列中估计全局运动向量(GMV)。然后,我们使用VMD将GMV分解为各种模式,以分离抖动运动和故意运动。在这里,基于不同模式独特的结构特征,使用SFA来区分不同的模式。通过与几种现有方法的比较,我们在复杂场景下评估了我们提出的方法。我们的实验结果表明,VMD在可比条件下优于其他稳定技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Digital image stabilization method based on variational mode decomposition and sampling fluctuation analysis
Unintentional motions often cause cameras to produce shaky images, which is a significant source of inter-frame blur and video quality decline. To ad-dress this issue, we present a digital image stabilization approach based on variational mode decomposition (VMD) and sampling fluctuation analysis (SFA) to generate stable video sequences. Our method first estimates the global motion vector (GMV) from a video sequence using the speeded up robust features (SURF) algorithm. We then decompose the GMV into various modes using VMD to separate jitter motions from intentional ones. Here, SFA is applied to distinguish different modes based on their unique structural characteristics. We evaluate our proposed method in complex scenarios by comparing it with several existing methods. Our experimental results demonstrate that VMD outperforms other stabilization techniques under comparable conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信