{"title":"基于XGBoost和LightGBM算法的贷款违约预测模型分析与比较","authors":"","doi":"10.25236/ajcis.2023.060905","DOIUrl":null,"url":null,"abstract":"Based on the default loans caused by information asymmetry and uncontrollable factors at this stage, this paper will use two algorithm models, XGBoost and LightGBM, to extract and screen the relevant information of the applicant and build a loan default prediction model to predict the default situation of the loan. And the two different models were compared and evaluated to provide data reference for financial institutions to select and build the loan default prediction model to reduce their risks and bank losses to a certain extent.","PeriodicalId":387664,"journal":{"name":"Academic Journal of Computing & Information Science","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis and Comparison of Loan Default Prediction Models Based on XGBoost and LightGBM Algorithm\",\"authors\":\"\",\"doi\":\"10.25236/ajcis.2023.060905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the default loans caused by information asymmetry and uncontrollable factors at this stage, this paper will use two algorithm models, XGBoost and LightGBM, to extract and screen the relevant information of the applicant and build a loan default prediction model to predict the default situation of the loan. And the two different models were compared and evaluated to provide data reference for financial institutions to select and build the loan default prediction model to reduce their risks and bank losses to a certain extent.\",\"PeriodicalId\":387664,\"journal\":{\"name\":\"Academic Journal of Computing & Information Science\",\"volume\":\"135 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Academic Journal of Computing & Information Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25236/ajcis.2023.060905\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Journal of Computing & Information Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25236/ajcis.2023.060905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis and Comparison of Loan Default Prediction Models Based on XGBoost and LightGBM Algorithm
Based on the default loans caused by information asymmetry and uncontrollable factors at this stage, this paper will use two algorithm models, XGBoost and LightGBM, to extract and screen the relevant information of the applicant and build a loan default prediction model to predict the default situation of the loan. And the two different models were compared and evaluated to provide data reference for financial institutions to select and build the loan default prediction model to reduce their risks and bank losses to a certain extent.