基于相似历史气象资料和WNN-HHO-BP神经网络的短期风电预测模型

{"title":"基于相似历史气象资料和WNN-HHO-BP神经网络的短期风电预测模型","authors":"","doi":"10.25236/ajcis.2023.060910","DOIUrl":null,"url":null,"abstract":"A short-term wind power prediction model based on similar historical meteorological data and WNN-HHO-BP neural network is proposed. Firstly, K-means clustering is used to classify the daily meteorological data into three classes as well as wavelet decomposition to decompose the data. Then, a BP neural network with Harris Hawk optimization algorithm and a BP neural network only are used for short-term prediction of wind power, and finally, the prediction results are derived and compared.","PeriodicalId":387664,"journal":{"name":"Academic Journal of Computing & Information Science","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Short-Term Wind Power Prediction Model Based on Similar Historical Meteorological Data and WNN-HHO-BP Neural Network\",\"authors\":\"\",\"doi\":\"10.25236/ajcis.2023.060910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A short-term wind power prediction model based on similar historical meteorological data and WNN-HHO-BP neural network is proposed. Firstly, K-means clustering is used to classify the daily meteorological data into three classes as well as wavelet decomposition to decompose the data. Then, a BP neural network with Harris Hawk optimization algorithm and a BP neural network only are used for short-term prediction of wind power, and finally, the prediction results are derived and compared.\",\"PeriodicalId\":387664,\"journal\":{\"name\":\"Academic Journal of Computing & Information Science\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Academic Journal of Computing & Information Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25236/ajcis.2023.060910\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Journal of Computing & Information Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25236/ajcis.2023.060910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于相似历史气象资料和WNN-HHO-BP神经网络的短期风电预测模型。首先,采用k均值聚类方法将日气象数据分为三类,并采用小波分解对数据进行分解。然后,将结合Harris Hawk优化算法的BP神经网络和仅使用BP神经网络进行风电短期预测,并对预测结果进行了推导和比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Short-Term Wind Power Prediction Model Based on Similar Historical Meteorological Data and WNN-HHO-BP Neural Network
A short-term wind power prediction model based on similar historical meteorological data and WNN-HHO-BP neural network is proposed. Firstly, K-means clustering is used to classify the daily meteorological data into three classes as well as wavelet decomposition to decompose the data. Then, a BP neural network with Harris Hawk optimization algorithm and a BP neural network only are used for short-term prediction of wind power, and finally, the prediction results are derived and compared.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信