具有不连续扩散系数的平均场随机微分方程

IF 1 2区 数学 Q3 STATISTICS & PROBABILITY
Jani Nykänen
{"title":"具有不连续扩散系数的平均场随机微分方程","authors":"Jani Nykänen","doi":"10.3934/puqr.2023016","DOIUrl":null,"url":null,"abstract":"We study $ {\\mathbb{R}}^d $ -valued mean-field stochastic differential equations with a diffusion coefficient that varies in a discontinuous manner on the $ L_p $ -norm of the process. We establish the existence of a unique global strong solution in the presence of a robust drift, while also investigating scenarios where the presence of a global solution is not assured.","PeriodicalId":42330,"journal":{"name":"Probability Uncertainty and Quantitative Risk","volume":"65 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mean-field stochastic differential equations with a discontinuous diffusion coefficient\",\"authors\":\"Jani Nykänen\",\"doi\":\"10.3934/puqr.2023016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study $ {\\\\mathbb{R}}^d $ -valued mean-field stochastic differential equations with a diffusion coefficient that varies in a discontinuous manner on the $ L_p $ -norm of the process. We establish the existence of a unique global strong solution in the presence of a robust drift, while also investigating scenarios where the presence of a global solution is not assured.\",\"PeriodicalId\":42330,\"journal\":{\"name\":\"Probability Uncertainty and Quantitative Risk\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability Uncertainty and Quantitative Risk\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/puqr.2023016\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Uncertainty and Quantitative Risk","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/puqr.2023016","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了$ {\mathbb{R}}^d $值的平均场随机微分方程,该方程的扩散系数在过程的$ L_p $范数上以不连续的方式变化。在鲁棒漂移存在的情况下,我们建立了唯一的全局强解的存在性,同时也研究了全局解存在不确定的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mean-field stochastic differential equations with a discontinuous diffusion coefficient
We study $ {\mathbb{R}}^d $ -valued mean-field stochastic differential equations with a diffusion coefficient that varies in a discontinuous manner on the $ L_p $ -norm of the process. We establish the existence of a unique global strong solution in the presence of a robust drift, while also investigating scenarios where the presence of a global solution is not assured.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
13.30%
发文量
29
审稿时长
12 weeks
期刊介绍: Probability, Uncertainty and Quantitative Risk (PUQR) is a quarterly academic journal under the supervision of the Ministry of Education of the People's Republic of China and hosted by Shandong University, which is open to the public at home and abroad (ISSN 2095-9672; CN 37-1505/O1). Probability, Uncertainty and Quantitative Risk (PUQR) mainly reports on the major developments in modern probability theory, covering stochastic analysis and statistics, stochastic processes, dynamical analysis and control theory, and their applications in the fields of finance, economics, biology, and computer science. The journal is currently indexed in ESCI, Scopus, Mathematical Reviews, zbMATH Open and other databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信