种群交叉扩散系统的收敛熵耗散BDF2有限体积格式

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED
Ansgar Jüngel, Martin Vetter
{"title":"种群交叉扩散系统的收敛熵耗散BDF2有限体积格式","authors":"Ansgar Jüngel, Martin Vetter","doi":"10.1515/cmam-2023-0009","DOIUrl":null,"url":null,"abstract":"Abstract A second-order backward differentiation formula (BDF2) finite-volume discretization for a nonlinear cross-diffusion system arising in population dynamics is studied. The numerical scheme preserves the Rao entropy structure and conserves the mass. The existence and uniqueness of discrete solutions and their large-time behavior as well as the convergence of the scheme are proved. The proofs are based on the G-stability of the BDF2 scheme, which provides an inequality for the quadratic Rao entropy and hence suitable a priori estimates. The novelty is the extension of this inequality to the system case. Some numerical experiments in one and two space dimensions underline the theoretical results.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":"1 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Convergent Entropy-Dissipating BDF2 Finite-Volume Scheme for a Population Cross-Diffusion System\",\"authors\":\"Ansgar Jüngel, Martin Vetter\",\"doi\":\"10.1515/cmam-2023-0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A second-order backward differentiation formula (BDF2) finite-volume discretization for a nonlinear cross-diffusion system arising in population dynamics is studied. The numerical scheme preserves the Rao entropy structure and conserves the mass. The existence and uniqueness of discrete solutions and their large-time behavior as well as the convergence of the scheme are proved. The proofs are based on the G-stability of the BDF2 scheme, which provides an inequality for the quadratic Rao entropy and hence suitable a priori estimates. The novelty is the extension of this inequality to the system case. Some numerical experiments in one and two space dimensions underline the theoretical results.\",\"PeriodicalId\":48751,\"journal\":{\"name\":\"Computational Methods in Applied Mathematics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cmam-2023-0009\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cmam-2023-0009","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要研究了一类非线性交叉扩散系统的二阶后向微分有限体积离散化问题。该数值格式保持了Rao熵结构和质量守恒。证明了离散解的存在唯一性及其大时性,并证明了该方案的收敛性。该证明基于BDF2格式的g稳定性,该格式提供了二次Rao熵的不等式,因此适合先验估计。新奇之处在于将这个不等式扩展到系统情况。一些一维和二维空间的数值实验证明了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Convergent Entropy-Dissipating BDF2 Finite-Volume Scheme for a Population Cross-Diffusion System
Abstract A second-order backward differentiation formula (BDF2) finite-volume discretization for a nonlinear cross-diffusion system arising in population dynamics is studied. The numerical scheme preserves the Rao entropy structure and conserves the mass. The existence and uniqueness of discrete solutions and their large-time behavior as well as the convergence of the scheme are proved. The proofs are based on the G-stability of the BDF2 scheme, which provides an inequality for the quadratic Rao entropy and hence suitable a priori estimates. The novelty is the extension of this inequality to the system case. Some numerical experiments in one and two space dimensions underline the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
7.70%
发文量
54
期刊介绍: The highly selective international mathematical journal Computational Methods in Applied Mathematics (CMAM) considers original mathematical contributions to computational methods and numerical analysis with applications mainly related to PDEs. CMAM seeks to be interdisciplinary while retaining the common thread of numerical analysis, it is intended to be readily readable and meant for a wide circle of researchers in applied mathematics. The journal is published by De Gruyter on behalf of the Institute of Mathematics of the National Academy of Science of Belarus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信