多元高斯过程:定义,例子和应用

IF 0.7 Q3 STATISTICS & PROBABILITY
Zexun Chen, Jun Fan, Kuo Wang
{"title":"多元高斯过程:定义,例子和应用","authors":"Zexun Chen, Jun Fan, Kuo Wang","doi":"10.1007/s40300-023-00238-3","DOIUrl":null,"url":null,"abstract":"Abstract Gaussian processes occupy one of the leading places in modern statistics and probability theory due to their importance and a wealth of strong results. The common use of Gaussian processes is in connection with problems related to estimation, detection, and many statistical or machine learning models. In this paper, we propose a precise definition of multivariate Gaussian processes based on Gaussian measures on vector-valued function spaces, and provide an existence proof. In addition, several fundamental properties of multivariate Gaussian processes, such as stationarity and independence, are introduced. We further derive two special cases of multivariate Gaussian processes, including multivariate Gaussian white noise and multivariate Brownian motion, and present a brief introduction to multivariate Gaussian process regression as a useful statistical learning method for multi-output prediction problems.","PeriodicalId":51716,"journal":{"name":"Metron-International Journal of Statistics","volume":"22 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Multivariate Gaussian processes: definitions, examples and applications\",\"authors\":\"Zexun Chen, Jun Fan, Kuo Wang\",\"doi\":\"10.1007/s40300-023-00238-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Gaussian processes occupy one of the leading places in modern statistics and probability theory due to their importance and a wealth of strong results. The common use of Gaussian processes is in connection with problems related to estimation, detection, and many statistical or machine learning models. In this paper, we propose a precise definition of multivariate Gaussian processes based on Gaussian measures on vector-valued function spaces, and provide an existence proof. In addition, several fundamental properties of multivariate Gaussian processes, such as stationarity and independence, are introduced. We further derive two special cases of multivariate Gaussian processes, including multivariate Gaussian white noise and multivariate Brownian motion, and present a brief introduction to multivariate Gaussian process regression as a useful statistical learning method for multi-output prediction problems.\",\"PeriodicalId\":51716,\"journal\":{\"name\":\"Metron-International Journal of Statistics\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metron-International Journal of Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40300-023-00238-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metron-International Journal of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40300-023-00238-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 8

摘要

摘要高斯过程由于其重要性和大量有力的结果,在现代统计学和概率论中占据了主导地位。高斯过程的常见用途是与估计,检测和许多统计或机器学习模型相关的问题有关。本文基于向量值函数空间上的高斯测度,给出了多元高斯过程的一个精确定义,并给出了存在性证明。此外,还介绍了多元高斯过程的几个基本性质,如平稳性和独立性。我们进一步推导了多元高斯过程的两种特殊情况,包括多元高斯白噪声和多元布朗运动,并简要介绍了多元高斯过程回归作为一种有用的统计学习方法用于多输出预测问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multivariate Gaussian processes: definitions, examples and applications
Abstract Gaussian processes occupy one of the leading places in modern statistics and probability theory due to their importance and a wealth of strong results. The common use of Gaussian processes is in connection with problems related to estimation, detection, and many statistical or machine learning models. In this paper, we propose a precise definition of multivariate Gaussian processes based on Gaussian measures on vector-valued function spaces, and provide an existence proof. In addition, several fundamental properties of multivariate Gaussian processes, such as stationarity and independence, are introduced. We further derive two special cases of multivariate Gaussian processes, including multivariate Gaussian white noise and multivariate Brownian motion, and present a brief introduction to multivariate Gaussian process regression as a useful statistical learning method for multi-output prediction problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metron-International Journal of Statistics
Metron-International Journal of Statistics STATISTICS & PROBABILITY-
CiteScore
1.60
自引率
0.00%
发文量
11
期刊介绍: METRON welcomes original articles on statistical methodology, statistical applications, or discussions of results achieved by statistical methods in different branches of science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信