{"title":"基于先验信息的铸造产品图像迭代重建方法","authors":"S. A. Zolotarev, A. T. T. Taruat, E. G. Bilenko","doi":"10.29235/1561-8358-2023-68-3-242-251","DOIUrl":null,"url":null,"abstract":"Methods of restoring images and properties of non-destructive testing objects based on solving inverse problems (problems of restoring distribution functions of unknown characteristics of an object based on the results of indirect measurements) are considered. Management methods are based on solving inverse problems and allow you to get the most complete information about the distributed properties of an object. The need to attract additional information imposes serious restrictions on the development of universal applied algorithms for solving incorrectly set tasks. As a rule, individual additional information is available for each specific non-destructive testing task. An effective numerical algorithm for solving an incorrectly posed problem should be focused on taking this information into account at each stage of the solution search. When solving an applied problem, it is also necessary that the algorithm corresponds to both the measuring capabilities and the capabilities of available computing tools. The problem of low-projection X-ray tomography is always associated with a lack of initial data and can only be solved using a priori information. To introduce the necessary additional information into the numerical algorithm, the methods of iterative reconstruction of tomographic images are identified as the most suitable. One of the approaches to the presentation of this kind of information is described. A practical solution to this problem will expand the scope of the X-ray tomography method.","PeriodicalId":486343,"journal":{"name":"Весці Нацыянальнай акадэміі навук Беларусі","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Taking into account a priori information in the iterative reconstruction of images of foundry products\",\"authors\":\"S. A. Zolotarev, A. T. T. Taruat, E. G. Bilenko\",\"doi\":\"10.29235/1561-8358-2023-68-3-242-251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Methods of restoring images and properties of non-destructive testing objects based on solving inverse problems (problems of restoring distribution functions of unknown characteristics of an object based on the results of indirect measurements) are considered. Management methods are based on solving inverse problems and allow you to get the most complete information about the distributed properties of an object. The need to attract additional information imposes serious restrictions on the development of universal applied algorithms for solving incorrectly set tasks. As a rule, individual additional information is available for each specific non-destructive testing task. An effective numerical algorithm for solving an incorrectly posed problem should be focused on taking this information into account at each stage of the solution search. When solving an applied problem, it is also necessary that the algorithm corresponds to both the measuring capabilities and the capabilities of available computing tools. The problem of low-projection X-ray tomography is always associated with a lack of initial data and can only be solved using a priori information. To introduce the necessary additional information into the numerical algorithm, the methods of iterative reconstruction of tomographic images are identified as the most suitable. One of the approaches to the presentation of this kind of information is described. A practical solution to this problem will expand the scope of the X-ray tomography method.\",\"PeriodicalId\":486343,\"journal\":{\"name\":\"Весці Нацыянальнай акадэміі навук Беларусі\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Весці Нацыянальнай акадэміі навук Беларусі\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29235/1561-8358-2023-68-3-242-251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Весці Нацыянальнай акадэміі навук Беларусі","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29235/1561-8358-2023-68-3-242-251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Taking into account a priori information in the iterative reconstruction of images of foundry products
Methods of restoring images and properties of non-destructive testing objects based on solving inverse problems (problems of restoring distribution functions of unknown characteristics of an object based on the results of indirect measurements) are considered. Management methods are based on solving inverse problems and allow you to get the most complete information about the distributed properties of an object. The need to attract additional information imposes serious restrictions on the development of universal applied algorithms for solving incorrectly set tasks. As a rule, individual additional information is available for each specific non-destructive testing task. An effective numerical algorithm for solving an incorrectly posed problem should be focused on taking this information into account at each stage of the solution search. When solving an applied problem, it is also necessary that the algorithm corresponds to both the measuring capabilities and the capabilities of available computing tools. The problem of low-projection X-ray tomography is always associated with a lack of initial data and can only be solved using a priori information. To introduce the necessary additional information into the numerical algorithm, the methods of iterative reconstruction of tomographic images are identified as the most suitable. One of the approaches to the presentation of this kind of information is described. A practical solution to this problem will expand the scope of the X-ray tomography method.