Oswyn Karsten Wattimena, Antoni Antoni, Djwantoro Hardjito
{"title":"自胶结粉煤灰作为唯一粘结材料混凝土的长期力学性能和微观结构","authors":"Oswyn Karsten Wattimena, Antoni Antoni, Djwantoro Hardjito","doi":"10.9744/ced.25.2.106-114","DOIUrl":null,"url":null,"abstract":"Self-cementing fly ash, containing calcium oxide (CaO) of about 20%, has successfully become a sole binder material in concrete through hydration. A very low water-to-fly ash ratio, e.g., below 0.20, is the main key to achieving the high compressive strength of concrete. This study explores the strength evolution, long-term compressive strength, and mechanical properties of concrete that utilize self-cementing fly ash as a sole binder material. Remarkably, the long-term compressive strength continues to develop over a year, reaching nearly 50 MPa at 365 days, a 34% increase from the 28-day strength. While the other mechanical properties are slightly lower than predictions from empirical formulas for Portland cement concrete, promising results are observed. Scanning Electron Microscope (SEM) images highlight surface-restricted hydration products in self-cementing fly ash, rather than full dissolution of fly ash particles.","PeriodicalId":30107,"journal":{"name":"Civil Engineering Dimension","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-term Mechanical Properties and Microstructure of Concrete Utilizing Self-Cementing Fly Ash as A Sole Binder Material\",\"authors\":\"Oswyn Karsten Wattimena, Antoni Antoni, Djwantoro Hardjito\",\"doi\":\"10.9744/ced.25.2.106-114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Self-cementing fly ash, containing calcium oxide (CaO) of about 20%, has successfully become a sole binder material in concrete through hydration. A very low water-to-fly ash ratio, e.g., below 0.20, is the main key to achieving the high compressive strength of concrete. This study explores the strength evolution, long-term compressive strength, and mechanical properties of concrete that utilize self-cementing fly ash as a sole binder material. Remarkably, the long-term compressive strength continues to develop over a year, reaching nearly 50 MPa at 365 days, a 34% increase from the 28-day strength. While the other mechanical properties are slightly lower than predictions from empirical formulas for Portland cement concrete, promising results are observed. Scanning Electron Microscope (SEM) images highlight surface-restricted hydration products in self-cementing fly ash, rather than full dissolution of fly ash particles.\",\"PeriodicalId\":30107,\"journal\":{\"name\":\"Civil Engineering Dimension\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Civil Engineering Dimension\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9744/ced.25.2.106-114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Civil Engineering Dimension","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9744/ced.25.2.106-114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Long-term Mechanical Properties and Microstructure of Concrete Utilizing Self-Cementing Fly Ash as A Sole Binder Material
Self-cementing fly ash, containing calcium oxide (CaO) of about 20%, has successfully become a sole binder material in concrete through hydration. A very low water-to-fly ash ratio, e.g., below 0.20, is the main key to achieving the high compressive strength of concrete. This study explores the strength evolution, long-term compressive strength, and mechanical properties of concrete that utilize self-cementing fly ash as a sole binder material. Remarkably, the long-term compressive strength continues to develop over a year, reaching nearly 50 MPa at 365 days, a 34% increase from the 28-day strength. While the other mechanical properties are slightly lower than predictions from empirical formulas for Portland cement concrete, promising results are observed. Scanning Electron Microscope (SEM) images highlight surface-restricted hydration products in self-cementing fly ash, rather than full dissolution of fly ash particles.