非阿基米德凸集的组合性质

Pub Date : 2023-05-29 DOI:10.2140/pjm.2023.323.1
Chernikov, Artem, Mennen, Alex
{"title":"非阿基米德凸集的组合性质","authors":"Chernikov, Artem, Mennen, Alex","doi":"10.2140/pjm.2023.323.1","DOIUrl":null,"url":null,"abstract":"We study combinatorial properties of convex sets over arbitrary valued fields. We demonstrate analogs of some classical results for convex sets over the reals (e.g. the fractional Helly theorem and B\\'ar\\'any's theorem on points in many simplices), along with some additional properties not satisfied by convex sets over the reals, including finite breadth and VC-dimension. These results are deduced from a simple combinatorial description of modules over the valuation ring in a spherically complete valued field.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Combinatorial properties of nonarchimedean convex sets\",\"authors\":\"Chernikov, Artem, Mennen, Alex\",\"doi\":\"10.2140/pjm.2023.323.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study combinatorial properties of convex sets over arbitrary valued fields. We demonstrate analogs of some classical results for convex sets over the reals (e.g. the fractional Helly theorem and B\\\\'ar\\\\'any's theorem on points in many simplices), along with some additional properties not satisfied by convex sets over the reals, including finite breadth and VC-dimension. These results are deduced from a simple combinatorial description of modules over the valuation ring in a spherically complete valued field.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/pjm.2023.323.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/pjm.2023.323.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究了任意值域上凸集的组合性质。我们证明了实上凸集的一些经典结果的类似(例如分数Helly定理和许多简单点上的B\'ar\'any定理),以及实上凸集不满足的一些附加性质,包括有限宽度和vc维。这些结果是由球完全值域上估值环上的模的简单组合描述推导出来的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Combinatorial properties of nonarchimedean convex sets
We study combinatorial properties of convex sets over arbitrary valued fields. We demonstrate analogs of some classical results for convex sets over the reals (e.g. the fractional Helly theorem and B\'ar\'any's theorem on points in many simplices), along with some additional properties not satisfied by convex sets over the reals, including finite breadth and VC-dimension. These results are deduced from a simple combinatorial description of modules over the valuation ring in a spherically complete valued field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信