{"title":"基于新刀具概念的磨削过程中机械材料载荷的利用潜力","authors":"Marco Eich, Daniel Meyer, Carsten Heinzel","doi":"10.3390/jmmp7050167","DOIUrl":null,"url":null,"abstract":"The objective of this work is to improve the surface and subsurface properties of steel parts by means of a new grinding tool concept featuring nearly spherical grains in an elastic bonding system and to uncover the underlying mechanisms leading to the intended improvement of surface integrity. The resulting workpiece topography and subsurface properties, such as residual stresses, are evaluated to characterise and assess the potential of this novel tool concept. Micrographs and EBSD images are also analysed. The results show increased mechanical process loads and resulting favourable subsurface properties in terms of mechanically induced plastic deformation and compressive residual stresses, revealing the high potential of spherical grains in an elastic bonding system.","PeriodicalId":16319,"journal":{"name":"Journal of Manufacturing and Materials Processing","volume":"361 1","pages":"0"},"PeriodicalIF":3.3000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilisation Potential of Mechanical Material Loads during Grinding by Means of a Novel Tool Concept\",\"authors\":\"Marco Eich, Daniel Meyer, Carsten Heinzel\",\"doi\":\"10.3390/jmmp7050167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this work is to improve the surface and subsurface properties of steel parts by means of a new grinding tool concept featuring nearly spherical grains in an elastic bonding system and to uncover the underlying mechanisms leading to the intended improvement of surface integrity. The resulting workpiece topography and subsurface properties, such as residual stresses, are evaluated to characterise and assess the potential of this novel tool concept. Micrographs and EBSD images are also analysed. The results show increased mechanical process loads and resulting favourable subsurface properties in terms of mechanically induced plastic deformation and compressive residual stresses, revealing the high potential of spherical grains in an elastic bonding system.\",\"PeriodicalId\":16319,\"journal\":{\"name\":\"Journal of Manufacturing and Materials Processing\",\"volume\":\"361 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Manufacturing and Materials Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jmmp7050167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing and Materials Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jmmp7050167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Utilisation Potential of Mechanical Material Loads during Grinding by Means of a Novel Tool Concept
The objective of this work is to improve the surface and subsurface properties of steel parts by means of a new grinding tool concept featuring nearly spherical grains in an elastic bonding system and to uncover the underlying mechanisms leading to the intended improvement of surface integrity. The resulting workpiece topography and subsurface properties, such as residual stresses, are evaluated to characterise and assess the potential of this novel tool concept. Micrographs and EBSD images are also analysed. The results show increased mechanical process loads and resulting favourable subsurface properties in terms of mechanically induced plastic deformation and compressive residual stresses, revealing the high potential of spherical grains in an elastic bonding system.