{"title":"电力线通信信道中基于模型的多径传播聚类","authors":"Kealeboga L. Mokise, Herman C. Myburgh","doi":"10.1186/s13634-023-01059-2","DOIUrl":null,"url":null,"abstract":"Abstract Powerline communication (PLC) channels are known to exhibit multipath propagation behaviour. The authors present a model-based framework to address the challenge of clustering multipath propagation components (MPCs) in PLC channels for indoor low-voltage (LV) environments. The framework employs a range of finite-mixture models (FMMs), including the gamma mixture model, the inverse gamma mixture model, the Gaussian mixture model, the inverse Gaussian mixture model, the Nakagami mixture model, the inverse Nakagami mixture model (INMM) and the Rayleigh mixture model, to identify clusters of MPCs. A measurement campaign of an unknown indoor LV PLC channel is conducted to obtain a channel response. From the channel response, the delay and magnitude parameters of the MPCs are extracted using the space-alternating generalised expectation maximisation algorithm adopted only for these parameters. A maximum likelihood approach and the expectation–maximisation algorithm are employed to fit the FMMs to the MPC delay-magnitude dataset to cluster MPCs in the delay domain. The results of the model-fitting process are then evaluated using the corrected Akaike information criterion (AICc), which enables a fair comparison of the candidate models over the feasible and finite range of clusters. A novel algorithm is introduced for estimating the feasible and finite range of clusters using the extracted delay and magnitude MPC parameters. The AICc’s ranking results show that the INMM model provides the best fit. Davies–Bouldin (DB) and Calinski–Harabasz (CH) indexes are used to compare the model-based clustering approach to the conventional distance-based clustering methods. Validation results show that CH and DB indexes closely agree in the optimal number of MPC clusters for model-based clustering, which corresponds to the most within-cluster compactness of MPCs and to the most between-cluster separation in the delay domain.","PeriodicalId":49203,"journal":{"name":"Eurasip Journal on Advances in Signal Processing","volume":"64 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model-based clustering of multipath propagation in powerline communication channels\",\"authors\":\"Kealeboga L. Mokise, Herman C. Myburgh\",\"doi\":\"10.1186/s13634-023-01059-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Powerline communication (PLC) channels are known to exhibit multipath propagation behaviour. The authors present a model-based framework to address the challenge of clustering multipath propagation components (MPCs) in PLC channels for indoor low-voltage (LV) environments. The framework employs a range of finite-mixture models (FMMs), including the gamma mixture model, the inverse gamma mixture model, the Gaussian mixture model, the inverse Gaussian mixture model, the Nakagami mixture model, the inverse Nakagami mixture model (INMM) and the Rayleigh mixture model, to identify clusters of MPCs. A measurement campaign of an unknown indoor LV PLC channel is conducted to obtain a channel response. From the channel response, the delay and magnitude parameters of the MPCs are extracted using the space-alternating generalised expectation maximisation algorithm adopted only for these parameters. A maximum likelihood approach and the expectation–maximisation algorithm are employed to fit the FMMs to the MPC delay-magnitude dataset to cluster MPCs in the delay domain. The results of the model-fitting process are then evaluated using the corrected Akaike information criterion (AICc), which enables a fair comparison of the candidate models over the feasible and finite range of clusters. A novel algorithm is introduced for estimating the feasible and finite range of clusters using the extracted delay and magnitude MPC parameters. The AICc’s ranking results show that the INMM model provides the best fit. Davies–Bouldin (DB) and Calinski–Harabasz (CH) indexes are used to compare the model-based clustering approach to the conventional distance-based clustering methods. Validation results show that CH and DB indexes closely agree in the optimal number of MPC clusters for model-based clustering, which corresponds to the most within-cluster compactness of MPCs and to the most between-cluster separation in the delay domain.\",\"PeriodicalId\":49203,\"journal\":{\"name\":\"Eurasip Journal on Advances in Signal Processing\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurasip Journal on Advances in Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13634-023-01059-2\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasip Journal on Advances in Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13634-023-01059-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Model-based clustering of multipath propagation in powerline communication channels
Abstract Powerline communication (PLC) channels are known to exhibit multipath propagation behaviour. The authors present a model-based framework to address the challenge of clustering multipath propagation components (MPCs) in PLC channels for indoor low-voltage (LV) environments. The framework employs a range of finite-mixture models (FMMs), including the gamma mixture model, the inverse gamma mixture model, the Gaussian mixture model, the inverse Gaussian mixture model, the Nakagami mixture model, the inverse Nakagami mixture model (INMM) and the Rayleigh mixture model, to identify clusters of MPCs. A measurement campaign of an unknown indoor LV PLC channel is conducted to obtain a channel response. From the channel response, the delay and magnitude parameters of the MPCs are extracted using the space-alternating generalised expectation maximisation algorithm adopted only for these parameters. A maximum likelihood approach and the expectation–maximisation algorithm are employed to fit the FMMs to the MPC delay-magnitude dataset to cluster MPCs in the delay domain. The results of the model-fitting process are then evaluated using the corrected Akaike information criterion (AICc), which enables a fair comparison of the candidate models over the feasible and finite range of clusters. A novel algorithm is introduced for estimating the feasible and finite range of clusters using the extracted delay and magnitude MPC parameters. The AICc’s ranking results show that the INMM model provides the best fit. Davies–Bouldin (DB) and Calinski–Harabasz (CH) indexes are used to compare the model-based clustering approach to the conventional distance-based clustering methods. Validation results show that CH and DB indexes closely agree in the optimal number of MPC clusters for model-based clustering, which corresponds to the most within-cluster compactness of MPCs and to the most between-cluster separation in the delay domain.
期刊介绍:
The aim of the EURASIP Journal on Advances in Signal Processing is to highlight the theoretical and practical aspects of signal processing in new and emerging technologies. The journal is directed as much at the practicing engineer as at the academic researcher. Authors of articles with novel contributions to the theory and/or practice of signal processing are welcome to submit their articles for consideration.