钆和铜掺杂增强铋铁氧体(BiFeO3)光催化活性的溶胶-凝胶合成及表征研究

Beerelli Rajitha, Vanga Rajendar, Padma Suvarna
{"title":"钆和铜掺杂增强铋铁氧体(BiFeO3)光催化活性的溶胶-凝胶合成及表征研究","authors":"Beerelli Rajitha, Vanga Rajendar, Padma Suvarna","doi":"10.47352/jmans.2774-3047.192","DOIUrl":null,"url":null,"abstract":"In this current research work, the sol-gel method was employed to synthesise, characterize and evaluate the photocatalytic activity of bismuth ferrite (BiFeO3, BFO) doped with two distinctive components consisting of a rare earth element Gadolinium (Gd) and a transition metal Copper (Cu). The dopant concentrations were systematically varied with different weight percentages (wt.%) denoted as Bi1-xGdxFe1-yCuyO3 (where ‘x’ = 0.10, 0.15 and 0.20 wt.%, where ‘y’ = 0.05, 0.10, and 0.15 wt.%). Subsequently, characterizations of the prepared samples were conducted using an array of cutting-edge analytical techniques including X-ray diffraction (XRD), filed emission scanning electron microscopy (FE-SEM), energy dispersive X-ray analysis (EDAX), and transmission electron microscopy (TEM). The XRD analysis results indicated that the presence of small impurity peaks was found in both Gd-doped BFO and GdCu-doped BFO. The FE-SEM and TEM results provided confirmation that the material was observed as a spherical shape, and the elemental compositions were also confirmed through EDAX analysis. The photocatalytic degradation of Rhodamine B dye under the influence of visible light irradiation was carried out and the results revealed varying degradation times, specifically, for Gd and Cu-doped BFO (Gd and Cu = 0.1 wt.%) achieved almost 98% degradation occurred in 30 minutes.","PeriodicalId":264018,"journal":{"name":"Journal of Multidisciplinary Applied Natural Science","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Photocatalytic Activity of Bismuth Ferrite (BiFeO3) via Gadolinium and Copper Doping: A Sol-Gel Synthesis and Characterization Study\",\"authors\":\"Beerelli Rajitha, Vanga Rajendar, Padma Suvarna\",\"doi\":\"10.47352/jmans.2774-3047.192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this current research work, the sol-gel method was employed to synthesise, characterize and evaluate the photocatalytic activity of bismuth ferrite (BiFeO3, BFO) doped with two distinctive components consisting of a rare earth element Gadolinium (Gd) and a transition metal Copper (Cu). The dopant concentrations were systematically varied with different weight percentages (wt.%) denoted as Bi1-xGdxFe1-yCuyO3 (where ‘x’ = 0.10, 0.15 and 0.20 wt.%, where ‘y’ = 0.05, 0.10, and 0.15 wt.%). Subsequently, characterizations of the prepared samples were conducted using an array of cutting-edge analytical techniques including X-ray diffraction (XRD), filed emission scanning electron microscopy (FE-SEM), energy dispersive X-ray analysis (EDAX), and transmission electron microscopy (TEM). The XRD analysis results indicated that the presence of small impurity peaks was found in both Gd-doped BFO and GdCu-doped BFO. The FE-SEM and TEM results provided confirmation that the material was observed as a spherical shape, and the elemental compositions were also confirmed through EDAX analysis. The photocatalytic degradation of Rhodamine B dye under the influence of visible light irradiation was carried out and the results revealed varying degradation times, specifically, for Gd and Cu-doped BFO (Gd and Cu = 0.1 wt.%) achieved almost 98% degradation occurred in 30 minutes.\",\"PeriodicalId\":264018,\"journal\":{\"name\":\"Journal of Multidisciplinary Applied Natural Science\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multidisciplinary Applied Natural Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47352/jmans.2774-3047.192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multidisciplinary Applied Natural Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47352/jmans.2774-3047.192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用溶胶-凝胶法合成了掺杂稀土元素钆(Gd)和过渡金属铜(Cu)两种不同组分的铋铁氧体(BiFeO3, BFO),并对其光催化活性进行了表征和评价。以Bi1-xGdxFe1-yCuyO3(其中“x”= 0.10、0.15和0.20 wt.%,其中“y”= 0.05、0.10和0.15 wt.%)表示不同重量百分比(wt.%)的掺杂剂浓度系统变化。随后,利用一系列尖端分析技术,包括x射线衍射(XRD)、场发射扫描电镜(FE-SEM)、能量色散x射线分析(EDAX)和透射电子显微镜(TEM),对制备的样品进行了表征。XRD分析结果表明,gd掺杂BFO和gdcu掺杂BFO均存在小杂质峰。FE-SEM和TEM结果证实了材料为球形,EDAX分析也证实了材料的元素组成。在可见光照射下进行了罗丹明B染料的光催化降解,结果显示降解时间不同,特别是对于Gd和Cu掺杂的BFO (Gd和Cu = 0.1 wt.%),在30分钟内实现了近98%的降解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing Photocatalytic Activity of Bismuth Ferrite (BiFeO3) via Gadolinium and Copper Doping: A Sol-Gel Synthesis and Characterization Study
In this current research work, the sol-gel method was employed to synthesise, characterize and evaluate the photocatalytic activity of bismuth ferrite (BiFeO3, BFO) doped with two distinctive components consisting of a rare earth element Gadolinium (Gd) and a transition metal Copper (Cu). The dopant concentrations were systematically varied with different weight percentages (wt.%) denoted as Bi1-xGdxFe1-yCuyO3 (where ‘x’ = 0.10, 0.15 and 0.20 wt.%, where ‘y’ = 0.05, 0.10, and 0.15 wt.%). Subsequently, characterizations of the prepared samples were conducted using an array of cutting-edge analytical techniques including X-ray diffraction (XRD), filed emission scanning electron microscopy (FE-SEM), energy dispersive X-ray analysis (EDAX), and transmission electron microscopy (TEM). The XRD analysis results indicated that the presence of small impurity peaks was found in both Gd-doped BFO and GdCu-doped BFO. The FE-SEM and TEM results provided confirmation that the material was observed as a spherical shape, and the elemental compositions were also confirmed through EDAX analysis. The photocatalytic degradation of Rhodamine B dye under the influence of visible light irradiation was carried out and the results revealed varying degradation times, specifically, for Gd and Cu-doped BFO (Gd and Cu = 0.1 wt.%) achieved almost 98% degradation occurred in 30 minutes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信