基于多高频电磁参数的随机森林集成模型眼螺栓故障检测

Q3 Engineering
H. V. H. Silva Filho, R.G. M. dos Santos, Douglas C. P. Barbosa, M. T. de Melo, Lauro R. G. S. Lourenço Novo
{"title":"基于多高频电磁参数的随机森林集成模型眼螺栓故障检测","authors":"H. V. H. Silva Filho, R.G. M. dos Santos, Douglas C. P. Barbosa, M. T. de Melo, Lauro R. G. S. Lourenço Novo","doi":"10.1590/2179-10742023v22i3271067","DOIUrl":null,"url":null,"abstract":"This paper presents an eyebolt structural fault detection system, based on the analysis of multiple electromagnetic parameters through a random forest classifier trained by both measurements and high-fidelity simulated signals. The proposed methodology is completely noninvasive and does not require the disassembly of the electrical infrastructure, allowing the live-line working. The obtained results show that the proposed multi-parameter strategy achieves high accuracy and increases the system’s capability of detecting faults, improving the efficiency of the operator’s preventive maintenance routines and, consequently, increasing the reliability of the power supply and energy distribution systems.","PeriodicalId":53567,"journal":{"name":"Journal of Microwaves, Optoelectronics and Electromagnetic Applications","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of Eyebolt Faults Using a Random Forest Ensemble Model Based on Multiple High-Frequency Electromagnetic Parameters\",\"authors\":\"H. V. H. Silva Filho, R.G. M. dos Santos, Douglas C. P. Barbosa, M. T. de Melo, Lauro R. G. S. Lourenço Novo\",\"doi\":\"10.1590/2179-10742023v22i3271067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an eyebolt structural fault detection system, based on the analysis of multiple electromagnetic parameters through a random forest classifier trained by both measurements and high-fidelity simulated signals. The proposed methodology is completely noninvasive and does not require the disassembly of the electrical infrastructure, allowing the live-line working. The obtained results show that the proposed multi-parameter strategy achieves high accuracy and increases the system’s capability of detecting faults, improving the efficiency of the operator’s preventive maintenance routines and, consequently, increasing the reliability of the power supply and energy distribution systems.\",\"PeriodicalId\":53567,\"journal\":{\"name\":\"Journal of Microwaves, Optoelectronics and Electromagnetic Applications\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Microwaves, Optoelectronics and Electromagnetic Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/2179-10742023v22i3271067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microwaves, Optoelectronics and Electromagnetic Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/2179-10742023v22i3271067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于测量和高保真模拟信号训练的随机森林分类器对多种电磁参数进行分析的螺栓结构故障检测系统。所提出的方法是完全无创的,不需要拆卸电气基础设施,允许带电工作。结果表明,所提出的多参数策略达到了较高的精度,提高了系统的故障检测能力,提高了操作员预防性维护的效率,从而提高了供配电系统的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of Eyebolt Faults Using a Random Forest Ensemble Model Based on Multiple High-Frequency Electromagnetic Parameters
This paper presents an eyebolt structural fault detection system, based on the analysis of multiple electromagnetic parameters through a random forest classifier trained by both measurements and high-fidelity simulated signals. The proposed methodology is completely noninvasive and does not require the disassembly of the electrical infrastructure, allowing the live-line working. The obtained results show that the proposed multi-parameter strategy achieves high accuracy and increases the system’s capability of detecting faults, improving the efficiency of the operator’s preventive maintenance routines and, consequently, increasing the reliability of the power supply and energy distribution systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Microwaves, Optoelectronics and Electromagnetic Applications
Journal of Microwaves, Optoelectronics and Electromagnetic Applications Engineering-Electrical and Electronic Engineering
CiteScore
1.70
自引率
0.00%
发文量
32
审稿时长
24 weeks
期刊介绍: The Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), published by the Brazilian Microwave and Optoelectronics Society (SBMO) and Brazilian Society of Electromagnetism (SBMag), is a professional, refereed publication devoted to disseminating technical information in the areas of Microwaves, Optoelectronics, Photonics, and Electromagnetic Applications. Authors are invited to submit original work in one or more of the following topics. Electromagnetic Field Analysis[...] Computer Aided Design [...] Microwave Technologies [...] Photonic Technologies [...] Packaging, Integration and Test [...] Millimeter Wave Technologies [...] Electromagnetic Applications[...] Other Topics [...] Antennas [...] Articles in all aspects of microwave, optoelectronics, photonic devices and applications will be covered in the journal. All submitted papers will be peer-reviewed under supervision of the editors and the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信