Hayder M. Al-kuraishy, Ali I. Al-Gareeb, Majid S. Jabir, Salim Albukhaty
{"title":"二甲双胍对2型糖尿病患者成纤维细胞生长因子21的影响:远而近","authors":"Hayder M. Al-kuraishy, Ali I. Al-Gareeb, Majid S. Jabir, Salim Albukhaty","doi":"10.1186/s43162-023-00238-9","DOIUrl":null,"url":null,"abstract":"Abstract Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by insulin resistance (IR) and hyperglycemia. The development of inflammatory disorders in T2DM triggers the activation of different growth factors as a compensatory mechanism to reduce IR and adipose tissue dysfunction in T2DM. Fibroblast growth factor 21 (FGF21) which is involved in the regulation of glucose homeostasis is attractive to be a novel therapeutic target in the management of T2DM. FGF21 has poor pharmacokinetic profile as it rapidly degraded; therefore, FGF21 analogs which are more stable can be used in T2DM patients. However, FGF21 analogs are tested pre-clinically but not approved in clinical settings. Therefore, searching for anti-diabetic agents who enhance FGF21 expression is mandatory. It has been shown that metformin which used as a first-line in the management of T2DM can positively affect the expression of FGF21, though the underlying mechanisms for metformin-induced FGF21 expression are not fully elucidated. Therefore, this review from published studies aimed to find how metformin improves insulin sensitivity through FGF21-dependent pathway in T2DM. In conclusion, metformin improves FGF21 signaling in T2DM, and this could be a novel mechanism for metformin in the amelioration of glucose homeostasis and metabolic disorders in T2DM patients.","PeriodicalId":22465,"journal":{"name":"The Egyptian Journal of Internal Medicine","volume":"20 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of metformin on fibroblast growth factor 21 in patients with type 2 diabetes mellitus: faraway but so close\",\"authors\":\"Hayder M. Al-kuraishy, Ali I. Al-Gareeb, Majid S. Jabir, Salim Albukhaty\",\"doi\":\"10.1186/s43162-023-00238-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by insulin resistance (IR) and hyperglycemia. The development of inflammatory disorders in T2DM triggers the activation of different growth factors as a compensatory mechanism to reduce IR and adipose tissue dysfunction in T2DM. Fibroblast growth factor 21 (FGF21) which is involved in the regulation of glucose homeostasis is attractive to be a novel therapeutic target in the management of T2DM. FGF21 has poor pharmacokinetic profile as it rapidly degraded; therefore, FGF21 analogs which are more stable can be used in T2DM patients. However, FGF21 analogs are tested pre-clinically but not approved in clinical settings. Therefore, searching for anti-diabetic agents who enhance FGF21 expression is mandatory. It has been shown that metformin which used as a first-line in the management of T2DM can positively affect the expression of FGF21, though the underlying mechanisms for metformin-induced FGF21 expression are not fully elucidated. Therefore, this review from published studies aimed to find how metformin improves insulin sensitivity through FGF21-dependent pathway in T2DM. In conclusion, metformin improves FGF21 signaling in T2DM, and this could be a novel mechanism for metformin in the amelioration of glucose homeostasis and metabolic disorders in T2DM patients.\",\"PeriodicalId\":22465,\"journal\":{\"name\":\"The Egyptian Journal of Internal Medicine\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Egyptian Journal of Internal Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s43162-023-00238-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Egyptian Journal of Internal Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43162-023-00238-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
Effects of metformin on fibroblast growth factor 21 in patients with type 2 diabetes mellitus: faraway but so close
Abstract Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by insulin resistance (IR) and hyperglycemia. The development of inflammatory disorders in T2DM triggers the activation of different growth factors as a compensatory mechanism to reduce IR and adipose tissue dysfunction in T2DM. Fibroblast growth factor 21 (FGF21) which is involved in the regulation of glucose homeostasis is attractive to be a novel therapeutic target in the management of T2DM. FGF21 has poor pharmacokinetic profile as it rapidly degraded; therefore, FGF21 analogs which are more stable can be used in T2DM patients. However, FGF21 analogs are tested pre-clinically but not approved in clinical settings. Therefore, searching for anti-diabetic agents who enhance FGF21 expression is mandatory. It has been shown that metformin which used as a first-line in the management of T2DM can positively affect the expression of FGF21, though the underlying mechanisms for metformin-induced FGF21 expression are not fully elucidated. Therefore, this review from published studies aimed to find how metformin improves insulin sensitivity through FGF21-dependent pathway in T2DM. In conclusion, metformin improves FGF21 signaling in T2DM, and this could be a novel mechanism for metformin in the amelioration of glucose homeostasis and metabolic disorders in T2DM patients.