T. M. Esman, J. R. Espley, J. R. Gruesbeck, A. Verbiscer, J. Giacalone, A. J. Halford
{"title":"我们能通过舒曼共振找到火星闪电吗?","authors":"T. M. Esman, J. R. Espley, J. R. Gruesbeck, A. Verbiscer, J. Giacalone, A. J. Halford","doi":"10.3389/fspas.2023.1162624","DOIUrl":null,"url":null,"abstract":"Schumann resonances are electromagnetic resonances generally associated with lightning. If they exist on Mars, Schumann resonances are expected to resonate within the ionospheric cavity at a fundamental frequency of 7–14 Hz. We conducted a search for 5–16 Hz signals below 400 km in magnetic field data from the Mars Global Surveyor (MGS) and Mars Atmosphere and Volatile Evolution (MAVEN) missions. Fast Fourier transforms and wavelet analysis were used to find these signals and investigate their characteristics further. We discuss our null results and the required steps forward to continue and improve this search. Future studies will require higher sensitivity instruments and would benefit from additional missions that reach into the lower ionosphere of Mars.","PeriodicalId":46793,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":"31 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Will we find Martian lightning via Schumann resonances?\",\"authors\":\"T. M. Esman, J. R. Espley, J. R. Gruesbeck, A. Verbiscer, J. Giacalone, A. J. Halford\",\"doi\":\"10.3389/fspas.2023.1162624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Schumann resonances are electromagnetic resonances generally associated with lightning. If they exist on Mars, Schumann resonances are expected to resonate within the ionospheric cavity at a fundamental frequency of 7–14 Hz. We conducted a search for 5–16 Hz signals below 400 km in magnetic field data from the Mars Global Surveyor (MGS) and Mars Atmosphere and Volatile Evolution (MAVEN) missions. Fast Fourier transforms and wavelet analysis were used to find these signals and investigate their characteristics further. We discuss our null results and the required steps forward to continue and improve this search. Future studies will require higher sensitivity instruments and would benefit from additional missions that reach into the lower ionosphere of Mars.\",\"PeriodicalId\":46793,\"journal\":{\"name\":\"Frontiers in Astronomy and Space Sciences\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Astronomy and Space Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fspas.2023.1162624\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Astronomy and Space Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fspas.2023.1162624","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Will we find Martian lightning via Schumann resonances?
Schumann resonances are electromagnetic resonances generally associated with lightning. If they exist on Mars, Schumann resonances are expected to resonate within the ionospheric cavity at a fundamental frequency of 7–14 Hz. We conducted a search for 5–16 Hz signals below 400 km in magnetic field data from the Mars Global Surveyor (MGS) and Mars Atmosphere and Volatile Evolution (MAVEN) missions. Fast Fourier transforms and wavelet analysis were used to find these signals and investigate their characteristics further. We discuss our null results and the required steps forward to continue and improve this search. Future studies will require higher sensitivity instruments and would benefit from additional missions that reach into the lower ionosphere of Mars.