{"title":"基于noma的无人机辅助数据采集网络剩余能量最大化:轨迹优化和资源分配","authors":"Yu Du, Yijun Guo, Jianjun Hao, Hao Zhu","doi":"10.1186/s13638-023-02307-7","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we concentrate on a non-orthogonal multiple access (NOMA)-enabled UAV data collection network for Internet of Things devices (IoTDs), where a unmanned aerial vehicle (UAV) is deployed as an aerial base station. During its flight period, the UAV can collect data from IoTDs and take advantage of the simultaneous wireless information and power transfer technology to charge the batteries of IoTDs. With the aid of NOMA, spectrum efficiency has been improved. We aim to prolong the lifetime of the IoT network, via jointly optimizing the UAV trajectory, the time allocation for information communication and wireless power transfer, the IoTDs’ transmit power, as well as the IoTDs’ group scheduling for NOMA. Then, we use the block coordinate decent and successive convex approximation techniques to tackle the non-convexity of the formulated problem. Numerical results show that the proposed solution increases the residual energy of the IoTDs, thus prolonging the lifetime of the network.","PeriodicalId":12040,"journal":{"name":"EURASIP Journal on Wireless Communications and Networking","volume":"113 1","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Residual energy maximization for NOMA-enabled UAV-assisted data collection network: trajectory optimization and resource allocation\",\"authors\":\"Yu Du, Yijun Guo, Jianjun Hao, Hao Zhu\",\"doi\":\"10.1186/s13638-023-02307-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we concentrate on a non-orthogonal multiple access (NOMA)-enabled UAV data collection network for Internet of Things devices (IoTDs), where a unmanned aerial vehicle (UAV) is deployed as an aerial base station. During its flight period, the UAV can collect data from IoTDs and take advantage of the simultaneous wireless information and power transfer technology to charge the batteries of IoTDs. With the aid of NOMA, spectrum efficiency has been improved. We aim to prolong the lifetime of the IoT network, via jointly optimizing the UAV trajectory, the time allocation for information communication and wireless power transfer, the IoTDs’ transmit power, as well as the IoTDs’ group scheduling for NOMA. Then, we use the block coordinate decent and successive convex approximation techniques to tackle the non-convexity of the formulated problem. Numerical results show that the proposed solution increases the residual energy of the IoTDs, thus prolonging the lifetime of the network.\",\"PeriodicalId\":12040,\"journal\":{\"name\":\"EURASIP Journal on Wireless Communications and Networking\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURASIP Journal on Wireless Communications and Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13638-023-02307-7\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Wireless Communications and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13638-023-02307-7","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Residual energy maximization for NOMA-enabled UAV-assisted data collection network: trajectory optimization and resource allocation
Abstract In this paper, we concentrate on a non-orthogonal multiple access (NOMA)-enabled UAV data collection network for Internet of Things devices (IoTDs), where a unmanned aerial vehicle (UAV) is deployed as an aerial base station. During its flight period, the UAV can collect data from IoTDs and take advantage of the simultaneous wireless information and power transfer technology to charge the batteries of IoTDs. With the aid of NOMA, spectrum efficiency has been improved. We aim to prolong the lifetime of the IoT network, via jointly optimizing the UAV trajectory, the time allocation for information communication and wireless power transfer, the IoTDs’ transmit power, as well as the IoTDs’ group scheduling for NOMA. Then, we use the block coordinate decent and successive convex approximation techniques to tackle the non-convexity of the formulated problem. Numerical results show that the proposed solution increases the residual energy of the IoTDs, thus prolonging the lifetime of the network.
期刊介绍:
The overall aim of the EURASIP Journal on Wireless Communications and Networking (EURASIP JWCN) is to bring together science and applications of wireless communications and networking technologies with emphasis on signal processing techniques and tools. It is directed at both practicing engineers and academic researchers. EURASIP Journal on Wireless Communications and Networking will highlight the continued growth and new challenges in wireless technology, for both application development and basic research. Articles should emphasize original results relating to the theory and/or applications of wireless communications and networking. Review articles, especially those emphasizing multidisciplinary views of communications and networking, are also welcome. EURASIP Journal on Wireless Communications and Networking employs a paperless, electronic submission and evaluation system to promote a rapid turnaround in the peer-review process.
The journal is an Open Access journal since 2004.