{"title":"具有可计算端点的可链连续体的可计算近似值","authors":"Zvonko Iljazović, Matea Jelić","doi":"10.1007/s00153-023-00891-5","DOIUrl":null,"url":null,"abstract":"<div><p>It is known that a semicomputable continuum <i>S</i> in a computable topological space can be approximated by a computable subcontinuum by any given precision under condition that <i>S</i> is chainable and decomposable. In this paper we show that decomposability can be replaced by the assumption that <i>S</i> is chainable from <i>a</i> to <i>b</i>, where <i>a</i> is a computable point.</p></div>","PeriodicalId":48853,"journal":{"name":"Archive for Mathematical Logic","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computable approximations of a chainable continuum with a computable endpoint\",\"authors\":\"Zvonko Iljazović, Matea Jelić\",\"doi\":\"10.1007/s00153-023-00891-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is known that a semicomputable continuum <i>S</i> in a computable topological space can be approximated by a computable subcontinuum by any given precision under condition that <i>S</i> is chainable and decomposable. In this paper we show that decomposability can be replaced by the assumption that <i>S</i> is chainable from <i>a</i> to <i>b</i>, where <i>a</i> is a computable point.</p></div>\",\"PeriodicalId\":48853,\"journal\":{\"name\":\"Archive for Mathematical Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Mathematical Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00153-023-00891-5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00153-023-00891-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0
摘要
众所周知,在可计算拓扑空间中的半可计算连续体 S,在 S 是可链和可分解的条件下,可以用任意给定精度的可计算子连续体来逼近。在本文中,我们证明可分解性可以用 S 从 a 到 b 是可链的假设来代替,其中 a 是一个可计算点。
Computable approximations of a chainable continuum with a computable endpoint
It is known that a semicomputable continuum S in a computable topological space can be approximated by a computable subcontinuum by any given precision under condition that S is chainable and decomposable. In this paper we show that decomposability can be replaced by the assumption that S is chainable from a to b, where a is a computable point.
期刊介绍:
The journal publishes research papers and occasionally surveys or expositions on mathematical logic. Contributions are also welcomed from other related areas, such as theoretical computer science or philosophy, as long as the methods of mathematical logic play a significant role. The journal therefore addresses logicians and mathematicians, computer scientists, and philosophers who are interested in the applications of mathematical logic in their own field, as well as its interactions with other areas of research.