具有分数噪声的随机Cahn-Hilliard/Allen-Cahn方程的大偏差原理

IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED
Amali Paul Rose Gregory, Murugan Suvinthra, Krishnan Balachandran
{"title":"具有分数噪声的随机Cahn-Hilliard/Allen-Cahn方程的大偏差原理","authors":"Amali Paul Rose Gregory, Murugan Suvinthra, Krishnan Balachandran","doi":"10.1080/07362994.2023.2254371","DOIUrl":null,"url":null,"abstract":"In this work, we consider the stochastic Cahn-Hilliard/Allen-Cahn equation with fractional noise, which is fractional in time and white in space. We obtain the existence, uniqueness, and Hölder regularity of the solution. Also, using a weak convergence approach, we prove that the law of solution associated with the above equation with a small perturbation satisfies the large deviation principle in the Hölder norm.","PeriodicalId":49474,"journal":{"name":"Stochastic Analysis and Applications","volume":"37 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large deviation principle for the stochastic Cahn-Hilliard/Allen-Cahn equation with fractional noise\",\"authors\":\"Amali Paul Rose Gregory, Murugan Suvinthra, Krishnan Balachandran\",\"doi\":\"10.1080/07362994.2023.2254371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we consider the stochastic Cahn-Hilliard/Allen-Cahn equation with fractional noise, which is fractional in time and white in space. We obtain the existence, uniqueness, and Hölder regularity of the solution. Also, using a weak convergence approach, we prove that the law of solution associated with the above equation with a small perturbation satisfies the large deviation principle in the Hölder norm.\",\"PeriodicalId\":49474,\"journal\":{\"name\":\"Stochastic Analysis and Applications\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/07362994.2023.2254371\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/07362994.2023.2254371","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们考虑具有分数噪声的随机Cahn-Hilliard/Allen-Cahn方程,该方程在时间上是分数的,在空间上是白的。得到了解的存在性、唯一性和Hölder正则性。同时,利用弱收敛方法,证明了具有小扰动的上述方程的解律满足Hölder范数中的大偏差原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large deviation principle for the stochastic Cahn-Hilliard/Allen-Cahn equation with fractional noise
In this work, we consider the stochastic Cahn-Hilliard/Allen-Cahn equation with fractional noise, which is fractional in time and white in space. We obtain the existence, uniqueness, and Hölder regularity of the solution. Also, using a weak convergence approach, we prove that the law of solution associated with the above equation with a small perturbation satisfies the large deviation principle in the Hölder norm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Analysis and Applications
Stochastic Analysis and Applications 数学-统计学与概率论
CiteScore
2.70
自引率
7.70%
发文量
32
审稿时长
6-12 weeks
期刊介绍: Stochastic Analysis and Applications presents the latest innovations in the field of stochastic theory and its practical applications, as well as the full range of related approaches to analyzing systems under random excitation. In addition, it is the only publication that offers the broad, detailed coverage necessary for the interfield and intrafield fertilization of new concepts and ideas, providing the scientific community with a unique and highly useful service.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信