具有自洽积分型源的高阶Toda格的积分

IF 0.6 Q3 MATHEMATICS
Bazar Babajanov, Murod Ruzmetov
{"title":"具有自洽积分型源的高阶Toda格的积分","authors":"Bazar Babajanov, Murod Ruzmetov","doi":"10.37256/cm.4420232391","DOIUrl":null,"url":null,"abstract":"This work presents an algorithm that uses the inverse scattering method to find a solution for the higher-order Toda lattice with a self-consistent source. The higher-order Toda lattice with an integral-type source is also a significant theoretical model belonging to very integrable systems. The problem is solved by applying the direct and inverse scattering methods to the discrete Sturm-Liouville operator, and the time dependence of the scattering data for this operator is attained. The solution to the problem is set up using the inverse scattering transform (IST) approach.","PeriodicalId":29767,"journal":{"name":"Contemporary Mathematics","volume":"1 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Integration of the Higher Order Toda Lattice with a Self-Consistent Integral Type Source\",\"authors\":\"Bazar Babajanov, Murod Ruzmetov\",\"doi\":\"10.37256/cm.4420232391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents an algorithm that uses the inverse scattering method to find a solution for the higher-order Toda lattice with a self-consistent source. The higher-order Toda lattice with an integral-type source is also a significant theoretical model belonging to very integrable systems. The problem is solved by applying the direct and inverse scattering methods to the discrete Sturm-Liouville operator, and the time dependence of the scattering data for this operator is attained. The solution to the problem is set up using the inverse scattering transform (IST) approach.\",\"PeriodicalId\":29767,\"journal\":{\"name\":\"Contemporary Mathematics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contemporary Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37256/cm.4420232391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37256/cm.4420232391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种利用逆散射法求解具有自洽源的高阶Toda格的算法。具有积分型源的高阶Toda格也是非常可积系统的一个重要理论模型。通过对离散Sturm-Liouville算子进行正散射和逆散射,得到了离散Sturm-Liouville算子散射数据的时间依赖性。利用逆散射变换(IST)方法建立了该问题的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Integration of the Higher Order Toda Lattice with a Self-Consistent Integral Type Source
This work presents an algorithm that uses the inverse scattering method to find a solution for the higher-order Toda lattice with a self-consistent source. The higher-order Toda lattice with an integral-type source is also a significant theoretical model belonging to very integrable systems. The problem is solved by applying the direct and inverse scattering methods to the discrete Sturm-Liouville operator, and the time dependence of the scattering data for this operator is attained. The solution to the problem is set up using the inverse scattering transform (IST) approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信