{"title":"再生剂和废橡胶、废塑料在含50%再生沥青沥青混合料中的应用试验研究","authors":"Majda Belhaj, Pavla Vackova, Jan Valentin","doi":"10.4028/p-rnxt7f","DOIUrl":null,"url":null,"abstract":"Nowadays’ sustainability-driven systems require a product to be environmentally beneficial as well as cost-effective whilst maintaining its great performance. In these circumstances, the pavement industry has emphasized its concern over waste production, reduced materials costs and conserving resources. Henhce, the seeking for new engineering solutions to move toward more sustainable, eco-friendly, and economically beneficial management. In this context, the use of RA (Reclaimed Asphalt) in the new asphalt mixtures has generated well-defined environmental benefits especially in terms of the reduction in raw-material consumption and possibility to upcycle the waste derived from existing old pavements. This study aims to evaluate the efficiency of the addition of selected rejuvenators which help to restore some of the properties of aged bituminous binder in RA, crumb rubber and plastic (LDPE) waste on the performance of asphalt mixture designed with elevated RA content (50 %). Mechanical performance was evaluated by means of laboratory investigations for typical characteristics dedicated to durability, stiffness and cracking potential. The results showed that a proper dosage of a suitable type of rejuvenation agent as well as the crumb rubber and plastic waste can enhance the overall durability of the elevated RA content asphalt mixtures.","PeriodicalId":46357,"journal":{"name":"Advances in Science and Technology-Research Journal","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Study on the Use of Selected Rejuvenators, Crumb Rubber and Plastic Waste for Asphalt Mixture Containing 50% Reclaimed Asphalt\",\"authors\":\"Majda Belhaj, Pavla Vackova, Jan Valentin\",\"doi\":\"10.4028/p-rnxt7f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays’ sustainability-driven systems require a product to be environmentally beneficial as well as cost-effective whilst maintaining its great performance. In these circumstances, the pavement industry has emphasized its concern over waste production, reduced materials costs and conserving resources. Henhce, the seeking for new engineering solutions to move toward more sustainable, eco-friendly, and economically beneficial management. In this context, the use of RA (Reclaimed Asphalt) in the new asphalt mixtures has generated well-defined environmental benefits especially in terms of the reduction in raw-material consumption and possibility to upcycle the waste derived from existing old pavements. This study aims to evaluate the efficiency of the addition of selected rejuvenators which help to restore some of the properties of aged bituminous binder in RA, crumb rubber and plastic (LDPE) waste on the performance of asphalt mixture designed with elevated RA content (50 %). Mechanical performance was evaluated by means of laboratory investigations for typical characteristics dedicated to durability, stiffness and cracking potential. The results showed that a proper dosage of a suitable type of rejuvenation agent as well as the crumb rubber and plastic waste can enhance the overall durability of the elevated RA content asphalt mixtures.\",\"PeriodicalId\":46357,\"journal\":{\"name\":\"Advances in Science and Technology-Research Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Science and Technology-Research Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-rnxt7f\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Science and Technology-Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-rnxt7f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Experimental Study on the Use of Selected Rejuvenators, Crumb Rubber and Plastic Waste for Asphalt Mixture Containing 50% Reclaimed Asphalt
Nowadays’ sustainability-driven systems require a product to be environmentally beneficial as well as cost-effective whilst maintaining its great performance. In these circumstances, the pavement industry has emphasized its concern over waste production, reduced materials costs and conserving resources. Henhce, the seeking for new engineering solutions to move toward more sustainable, eco-friendly, and economically beneficial management. In this context, the use of RA (Reclaimed Asphalt) in the new asphalt mixtures has generated well-defined environmental benefits especially in terms of the reduction in raw-material consumption and possibility to upcycle the waste derived from existing old pavements. This study aims to evaluate the efficiency of the addition of selected rejuvenators which help to restore some of the properties of aged bituminous binder in RA, crumb rubber and plastic (LDPE) waste on the performance of asphalt mixture designed with elevated RA content (50 %). Mechanical performance was evaluated by means of laboratory investigations for typical characteristics dedicated to durability, stiffness and cracking potential. The results showed that a proper dosage of a suitable type of rejuvenation agent as well as the crumb rubber and plastic waste can enhance the overall durability of the elevated RA content asphalt mixtures.