随机利率跳跃扩散下连续提取GMWBs的半拉格朗日ε $$ \varepsilon $$单调傅立叶方法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yaowen Lu, Duy‐Minh Dang
{"title":"随机利率跳跃扩散下连续提取GMWBs的半拉格朗日ε $$ \\varepsilon $$单调傅立叶方法","authors":"Yaowen Lu, Duy‐Minh Dang","doi":"10.1002/num.23075","DOIUrl":null,"url":null,"abstract":"Abstract We develop an efficient pricing approach for guaranteed minimum withdrawal benefits (GMWBs) with continuous withdrawals under a realistic modeling setting with jump‐diffusions and stochastic interest rate. Utilizing an impulse stochastic control framework, we formulate the no‐arbitrage GMWB pricing problem as a time‐dependent Hamilton‐Jacobi‐Bellman (HJB) Quasi‐Variational Inequality (QVI) having three spatial dimensions with cross derivative terms. Through a novel numerical approach built upon a combination of a semi‐Lagrangian method and the Green's function of an associated linear partial integro‐differential equation, we develop an ‐monotone Fourier pricing method, where is a monotonicity tolerance. Together with a provable strong comparison result for the HJB‐QVI, we mathematically demonstrate convergence of the proposed scheme to the viscosity solution of the HJB‐QVI as . We present a comprehensive study of the impact of simultaneously considering jumps in the subaccount process and stochastic interest rate on the no‐arbitrage prices and fair insurance fees of GMWBs, as well as on the holder's optimal withdrawal behaviors.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A semi‐Lagrangian ε$$ \\\\varepsilon $$‐monotone Fourier method for continuous withdrawal GMWBs under jump‐diffusion with stochastic interest rate\",\"authors\":\"Yaowen Lu, Duy‐Minh Dang\",\"doi\":\"10.1002/num.23075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We develop an efficient pricing approach for guaranteed minimum withdrawal benefits (GMWBs) with continuous withdrawals under a realistic modeling setting with jump‐diffusions and stochastic interest rate. Utilizing an impulse stochastic control framework, we formulate the no‐arbitrage GMWB pricing problem as a time‐dependent Hamilton‐Jacobi‐Bellman (HJB) Quasi‐Variational Inequality (QVI) having three spatial dimensions with cross derivative terms. Through a novel numerical approach built upon a combination of a semi‐Lagrangian method and the Green's function of an associated linear partial integro‐differential equation, we develop an ‐monotone Fourier pricing method, where is a monotonicity tolerance. Together with a provable strong comparison result for the HJB‐QVI, we mathematically demonstrate convergence of the proposed scheme to the viscosity solution of the HJB‐QVI as . We present a comprehensive study of the impact of simultaneously considering jumps in the subaccount process and stochastic interest rate on the no‐arbitrage prices and fair insurance fees of GMWBs, as well as on the holder's optimal withdrawal behaviors.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/num.23075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/num.23075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在具有跳跃扩散和随机利率的现实建模设置下,我们开发了一种有效的连续提取保证最小提取收益(GMWBs)的定价方法。利用脉冲随机控制框架,我们将无套利GMWB定价问题表述为具有三维空间的具有交叉导数项的时变Hamilton - Jacobi - Bellman (HJB)拟变分不等式(QVI)。通过建立在半拉格朗日方法和相关线性偏积分微分方程的格林函数的组合上的一种新的数值方法,我们开发了一种单调傅里叶定价方法,其中是单调容忍的。结合HJB - QVI的一个可证明的强比较结果,我们从数学上证明了所提出的格式对HJB - QVI的粘度解的收敛性。我们全面研究了同时考虑子账户过程和随机利率的跳跃对GMWBs的无套利价格和公平保险费以及持有人的最优提现行为的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A semi‐Lagrangian ε$$ \varepsilon $$‐monotone Fourier method for continuous withdrawal GMWBs under jump‐diffusion with stochastic interest rate
Abstract We develop an efficient pricing approach for guaranteed minimum withdrawal benefits (GMWBs) with continuous withdrawals under a realistic modeling setting with jump‐diffusions and stochastic interest rate. Utilizing an impulse stochastic control framework, we formulate the no‐arbitrage GMWB pricing problem as a time‐dependent Hamilton‐Jacobi‐Bellman (HJB) Quasi‐Variational Inequality (QVI) having three spatial dimensions with cross derivative terms. Through a novel numerical approach built upon a combination of a semi‐Lagrangian method and the Green's function of an associated linear partial integro‐differential equation, we develop an ‐monotone Fourier pricing method, where is a monotonicity tolerance. Together with a provable strong comparison result for the HJB‐QVI, we mathematically demonstrate convergence of the proposed scheme to the viscosity solution of the HJB‐QVI as . We present a comprehensive study of the impact of simultaneously considering jumps in the subaccount process and stochastic interest rate on the no‐arbitrage prices and fair insurance fees of GMWBs, as well as on the holder's optimal withdrawal behaviors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信