Yuchen Dai, Manxiang Song, Donghai Jin, Xingmin Gui, Xiaoheng Liu
{"title":"基于通流法的燃气涡轮发动机瞬态性能仿真及实验验证","authors":"Yuchen Dai, Manxiang Song, Donghai Jin, Xingmin Gui, Xiaoheng Liu","doi":"10.1115/1.4063828","DOIUrl":null,"url":null,"abstract":"Abstract Current research on engine transient performance primarily focuses on the variation of key aerothermodynamic parameters in specific sections, neglecting the comprehensive understanding of the engine's inner flow field during transient operations. To address this gap, this paper proposes a 2D transient simulation method that effectively captures the evolution of the flow field in the meridional plane. The approach involves deriving circumferential averaging equations in a rotating coordinate system with variable angular velocity, considering angular acceleration source terms. The engine components, including the compressor, combustion chamber, turbine, and rotating shaft, are individually modeled. The newly derived governing equations are solved using a dual-time step approach, where an inner-iteration ensures mass flow conservation, and an outer-iteration updates the rotational speed. Using a real turbojet engine as a case study, transient examinations comprising acceleration and deceleration are performed. A comparative analysis of experimental and simulation results is conducted, revealing an average error of 0.9% in shaft speed, 7.8% in engine thrust, 1.7% in engine exhaust temperature, and 5.1% in compressor outlet pressure. Additionally, the study analyzes and compares the internal flow fields during the transient process, contributing to a deeper understanding of the engine's dynamic behavior. The research effort establishes a practical methodology and technology for conducting comprehensive two-dimensional engine transient cycle analyses within reasonable computational resources and timeframes.","PeriodicalId":15685,"journal":{"name":"Journal of Engineering for Gas Turbines and Power-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transient Performance Simulation of Gas Turbine Engine Based On Through-Flow Method and Experimental Verification\",\"authors\":\"Yuchen Dai, Manxiang Song, Donghai Jin, Xingmin Gui, Xiaoheng Liu\",\"doi\":\"10.1115/1.4063828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Current research on engine transient performance primarily focuses on the variation of key aerothermodynamic parameters in specific sections, neglecting the comprehensive understanding of the engine's inner flow field during transient operations. To address this gap, this paper proposes a 2D transient simulation method that effectively captures the evolution of the flow field in the meridional plane. The approach involves deriving circumferential averaging equations in a rotating coordinate system with variable angular velocity, considering angular acceleration source terms. The engine components, including the compressor, combustion chamber, turbine, and rotating shaft, are individually modeled. The newly derived governing equations are solved using a dual-time step approach, where an inner-iteration ensures mass flow conservation, and an outer-iteration updates the rotational speed. Using a real turbojet engine as a case study, transient examinations comprising acceleration and deceleration are performed. A comparative analysis of experimental and simulation results is conducted, revealing an average error of 0.9% in shaft speed, 7.8% in engine thrust, 1.7% in engine exhaust temperature, and 5.1% in compressor outlet pressure. Additionally, the study analyzes and compares the internal flow fields during the transient process, contributing to a deeper understanding of the engine's dynamic behavior. The research effort establishes a practical methodology and technology for conducting comprehensive two-dimensional engine transient cycle analyses within reasonable computational resources and timeframes.\",\"PeriodicalId\":15685,\"journal\":{\"name\":\"Journal of Engineering for Gas Turbines and Power-transactions of The Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering for Gas Turbines and Power-transactions of The Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063828\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering for Gas Turbines and Power-transactions of The Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063828","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Transient Performance Simulation of Gas Turbine Engine Based On Through-Flow Method and Experimental Verification
Abstract Current research on engine transient performance primarily focuses on the variation of key aerothermodynamic parameters in specific sections, neglecting the comprehensive understanding of the engine's inner flow field during transient operations. To address this gap, this paper proposes a 2D transient simulation method that effectively captures the evolution of the flow field in the meridional plane. The approach involves deriving circumferential averaging equations in a rotating coordinate system with variable angular velocity, considering angular acceleration source terms. The engine components, including the compressor, combustion chamber, turbine, and rotating shaft, are individually modeled. The newly derived governing equations are solved using a dual-time step approach, where an inner-iteration ensures mass flow conservation, and an outer-iteration updates the rotational speed. Using a real turbojet engine as a case study, transient examinations comprising acceleration and deceleration are performed. A comparative analysis of experimental and simulation results is conducted, revealing an average error of 0.9% in shaft speed, 7.8% in engine thrust, 1.7% in engine exhaust temperature, and 5.1% in compressor outlet pressure. Additionally, the study analyzes and compares the internal flow fields during the transient process, contributing to a deeper understanding of the engine's dynamic behavior. The research effort establishes a practical methodology and technology for conducting comprehensive two-dimensional engine transient cycle analyses within reasonable computational resources and timeframes.
期刊介绍:
The ASME Journal of Engineering for Gas Turbines and Power publishes archival-quality papers in the areas of gas and steam turbine technology, nuclear engineering, internal combustion engines, and fossil power generation. It covers a broad spectrum of practical topics of interest to industry. Subject areas covered include: thermodynamics; fluid mechanics; heat transfer; and modeling; propulsion and power generation components and systems; combustion, fuels, and emissions; nuclear reactor systems and components; thermal hydraulics; heat exchangers; nuclear fuel technology and waste management; I. C. engines for marine, rail, and power generation; steam and hydro power generation; advanced cycles for fossil energy generation; pollution control and environmental effects.