$3$发生器上fomo - kirillov代数的Hochschild和循环(co)同调

IF 0.7 2区 数学 Q2 MATHEMATICS
Estanislao Herscovich, Ziling Li
{"title":"$3$发生器上fomo - kirillov代数的Hochschild和循环(co)同调","authors":"Estanislao Herscovich, Ziling Li","doi":"10.4171/jncg/525","DOIUrl":null,"url":null,"abstract":"The goal of this article is to explicitly compute the Hochschild (co)homology of the Fomin–Kirillov algebra on three generators over a field of characteristic different from $2$ and $3$. We also obtain the cyclic (co)homology of the Fomin–Kirillov algebra in case the characteristic of the field is zero. Moreover, we compute the algebra structure of the Hochschild cohomology.","PeriodicalId":54780,"journal":{"name":"Journal of Noncommutative Geometry","volume":"29 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hochschild and cyclic (co)homology of the Fomin–Kirillov algebra on $3$ generators\",\"authors\":\"Estanislao Herscovich, Ziling Li\",\"doi\":\"10.4171/jncg/525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this article is to explicitly compute the Hochschild (co)homology of the Fomin–Kirillov algebra on three generators over a field of characteristic different from $2$ and $3$. We also obtain the cyclic (co)homology of the Fomin–Kirillov algebra in case the characteristic of the field is zero. Moreover, we compute the algebra structure of the Hochschild cohomology.\",\"PeriodicalId\":54780,\"journal\":{\"name\":\"Journal of Noncommutative Geometry\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Noncommutative Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/jncg/525\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Noncommutative Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/jncg/525","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是显式地计算在特征不同于$2$和$3$的域上的三个生成元上的fmin - kirillov代数的Hochschild (co)同调。在场的特征为零的情况下,我们还得到了fomo - kirillov代数的循环(co)同调。此外,我们还计算了Hochschild上同调的代数结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hochschild and cyclic (co)homology of the Fomin–Kirillov algebra on $3$ generators
The goal of this article is to explicitly compute the Hochschild (co)homology of the Fomin–Kirillov algebra on three generators over a field of characteristic different from $2$ and $3$. We also obtain the cyclic (co)homology of the Fomin–Kirillov algebra in case the characteristic of the field is zero. Moreover, we compute the algebra structure of the Hochschild cohomology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
11.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: The Journal of Noncommutative Geometry covers the noncommutative world in all its aspects. It is devoted to publication of research articles which represent major advances in the area of noncommutative geometry and its applications to other fields of mathematics and theoretical physics. Topics covered include in particular: Hochschild and cyclic cohomology K-theory and index theory Measure theory and topology of noncommutative spaces, operator algebras Spectral geometry of noncommutative spaces Noncommutative algebraic geometry Hopf algebras and quantum groups Foliations, groupoids, stacks, gerbes Deformations and quantization Noncommutative spaces in number theory and arithmetic geometry Noncommutative geometry in physics: QFT, renormalization, gauge theory, string theory, gravity, mirror symmetry, solid state physics, statistical mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信