{"title":"“白嘴鸦单群的一个子半群”的推广","authors":"George Fikioris, Giannis Fikioris","doi":"10.1007/s00233-023-10393-8","DOIUrl":null,"url":null,"abstract":"Abstract A recent paper studied an inverse submonoid $$M_{n}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>M</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:math> of the rook monoid, by representing the nonzero elements of $$M_{n}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>M</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:math> via certain triplets belonging to $${\\mathbb {Z}}^3$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mi>Z</mml:mi> </mml:mrow> <mml:mn>3</mml:mn> </mml:msup> </mml:math> . In this note, we allow the triplets to belong to $${\\mathbb {R}}^3$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mn>3</mml:mn> </mml:msup> </mml:math> . We thus study a new inverse monoid $$\\overline{M}_{n}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mover> <mml:mi>M</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> <mml:mi>n</mml:mi> </mml:msub> </mml:math> , which is a supermonoid of $$M_{n}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>M</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:math> . We point out similarities and find essential differences. We show that $$\\overline{M}_{n}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mover> <mml:mi>M</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> <mml:mi>n</mml:mi> </mml:msub> </mml:math> is a noncommutative, periodic, combinatorial, fundamental, completely semisimple, and strongly $${E}^{*}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mi>E</mml:mi> </mml:mrow> <mml:mrow> <mml:mrow /> <mml:mo>∗</mml:mo> </mml:mrow> </mml:msup> </mml:math> -unitary inverse monoid.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An extension to “A subsemigroup of the rook monoid”\",\"authors\":\"George Fikioris, Giannis Fikioris\",\"doi\":\"10.1007/s00233-023-10393-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A recent paper studied an inverse submonoid $$M_{n}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msub> <mml:mi>M</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:math> of the rook monoid, by representing the nonzero elements of $$M_{n}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msub> <mml:mi>M</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:math> via certain triplets belonging to $${\\\\mathbb {Z}}^3$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mrow> <mml:mi>Z</mml:mi> </mml:mrow> <mml:mn>3</mml:mn> </mml:msup> </mml:math> . In this note, we allow the triplets to belong to $${\\\\mathbb {R}}^3$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mn>3</mml:mn> </mml:msup> </mml:math> . We thus study a new inverse monoid $$\\\\overline{M}_{n}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msub> <mml:mover> <mml:mi>M</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> <mml:mi>n</mml:mi> </mml:msub> </mml:math> , which is a supermonoid of $$M_{n}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msub> <mml:mi>M</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:math> . We point out similarities and find essential differences. We show that $$\\\\overline{M}_{n}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msub> <mml:mover> <mml:mi>M</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> <mml:mi>n</mml:mi> </mml:msub> </mml:math> is a noncommutative, periodic, combinatorial, fundamental, completely semisimple, and strongly $${E}^{*}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mrow> <mml:mi>E</mml:mi> </mml:mrow> <mml:mrow> <mml:mrow /> <mml:mo>∗</mml:mo> </mml:mrow> </mml:msup> </mml:math> -unitary inverse monoid.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00233-023-10393-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00233-023-10393-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
摘要本文研究了车单阵的一个逆子单阵$$M_{n}$$ mn,通过若干属于$${\mathbb {Z}}^3$$ z3的三元组来表示$$M_{n}$$ mn的非零元素。在本文中,我们允许三元组属于$${\mathbb {R}}^3$$ r3。因此,我们研究了一个新的逆单阵$$\overline{M}_{n}$$ M¯n,它是$$M_{n}$$ M n的超单阵。我们指出相似之处,找出本质的不同之处。我们证明$$\overline{M}_{n}$$ M¯n是一个非交换的、周期的、组合的、基本的、完全半简单的、强的$${E}^{*}$$ E * -酉逆单群。
An extension to “A subsemigroup of the rook monoid”
Abstract A recent paper studied an inverse submonoid $$M_{n}$$ Mn of the rook monoid, by representing the nonzero elements of $$M_{n}$$ Mn via certain triplets belonging to $${\mathbb {Z}}^3$$ Z3 . In this note, we allow the triplets to belong to $${\mathbb {R}}^3$$ R3 . We thus study a new inverse monoid $$\overline{M}_{n}$$ M¯n , which is a supermonoid of $$M_{n}$$ Mn . We point out similarities and find essential differences. We show that $$\overline{M}_{n}$$ M¯n is a noncommutative, periodic, combinatorial, fundamental, completely semisimple, and strongly $${E}^{*}$$ E∗ -unitary inverse monoid.