复二平面格拉斯曼型中Ricci-Bourguignon孤子的实超曲面

IF 0.6 4区 数学 Q3 MATHEMATICS
Young Jin Suh
{"title":"复二平面格拉斯曼型中Ricci-Bourguignon孤子的实超曲面","authors":"Young Jin Suh","doi":"10.1142/s0129167x23500982","DOIUrl":null,"url":null,"abstract":"The study of Ricci–Bourguignon soliton on real hypersurfaces in the complex two-plane Grassmannian [Formula: see text] is first investigated. It is proved that there exists a shrinking Ricci–Bourguignon soliton on a Hopf real hypersurface [Formula: see text] in [Formula: see text] by using pseudo-anticommuting Ricci tensor. Moreover, we have proved that there does not exist a nontrivial gradient Ricci–Bourguignon soliton [Formula: see text] on real hypersurfaces with isometric Reeb flow in the complex two-plane Grassmannian [Formula: see text]. Among the class of contact hypersurface in [Formula: see text], we also prove that there does not exist a nontrivial gradient Ricci–Bourguignon soliton in [Formula: see text] over the totally geodesic and totally real quaternionic projective space [Formula: see text] in [Formula: see text], [Formula: see text].","PeriodicalId":54951,"journal":{"name":"International Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real Hypersurfaces with Ricci-Bourguignon Soliton in the Complex Two-Plane Grassmannians\",\"authors\":\"Young Jin Suh\",\"doi\":\"10.1142/s0129167x23500982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study of Ricci–Bourguignon soliton on real hypersurfaces in the complex two-plane Grassmannian [Formula: see text] is first investigated. It is proved that there exists a shrinking Ricci–Bourguignon soliton on a Hopf real hypersurface [Formula: see text] in [Formula: see text] by using pseudo-anticommuting Ricci tensor. Moreover, we have proved that there does not exist a nontrivial gradient Ricci–Bourguignon soliton [Formula: see text] on real hypersurfaces with isometric Reeb flow in the complex two-plane Grassmannian [Formula: see text]. Among the class of contact hypersurface in [Formula: see text], we also prove that there does not exist a nontrivial gradient Ricci–Bourguignon soliton in [Formula: see text] over the totally geodesic and totally real quaternionic projective space [Formula: see text] in [Formula: see text], [Formula: see text].\",\"PeriodicalId\":54951,\"journal\":{\"name\":\"International Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129167x23500982\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0129167x23500982","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文首次研究了复两平面格拉斯曼[公式:见文]实超曲面上的Ricci-Bourguignon孤子。利用伪反交换Ricci张量,证明了在Hopf实超曲面[公式:见文]上存在一个收缩Ricci - bourguignon孤子。此外,我们还证明了在复杂两平面Grassmannian[公式:见文]中具有Reeb流的实超曲面上不存在非平凡梯度Ricci-Bourguignon孤子[公式:见文]。在[公式:见文]中的接触超曲面类中,我们也证明了在[公式:见文]、[公式:见文]中的全测地线和全实数四元射影空间[公式:见文]上[公式:见文]中[公式:见文]不存在[公式:见文]中的非平凡梯度Ricci-Bourguignon孤子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real Hypersurfaces with Ricci-Bourguignon Soliton in the Complex Two-Plane Grassmannians
The study of Ricci–Bourguignon soliton on real hypersurfaces in the complex two-plane Grassmannian [Formula: see text] is first investigated. It is proved that there exists a shrinking Ricci–Bourguignon soliton on a Hopf real hypersurface [Formula: see text] in [Formula: see text] by using pseudo-anticommuting Ricci tensor. Moreover, we have proved that there does not exist a nontrivial gradient Ricci–Bourguignon soliton [Formula: see text] on real hypersurfaces with isometric Reeb flow in the complex two-plane Grassmannian [Formula: see text]. Among the class of contact hypersurface in [Formula: see text], we also prove that there does not exist a nontrivial gradient Ricci–Bourguignon soliton in [Formula: see text] over the totally geodesic and totally real quaternionic projective space [Formula: see text] in [Formula: see text], [Formula: see text].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
82
审稿时长
12 months
期刊介绍: The International Journal of Mathematics publishes original papers in mathematics in general, but giving a preference to those in the areas of mathematics represented by the editorial board. The journal has been published monthly except in June and December to bring out new results without delay. Occasionally, expository papers of exceptional value may also be published. The first issue appeared in March 1990.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信