基于bim的应用中的机器学习方法综述

IF 0.6 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Barbara Strug, Grazyna Slusarczyk
{"title":"基于bim的应用中的机器学习方法综述","authors":"Barbara Strug, Grazyna Slusarczyk","doi":"10.1142/s2196888823300028","DOIUrl":null,"url":null,"abstract":"This paper presents a survey of machine learning (ML) methods used in applications dedicated to the building and construction industry. A building information modeling (BIM) model, being a database system for civil engineering data, is presented. A representative selection of methods and applications is described. The aim of this paper is to facilitate the continuation of research efforts and to encourage bigger participation of database system researchers in the field of civil engineering.","PeriodicalId":30898,"journal":{"name":"Vietnam Journal of Computer Science","volume":"14 3","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Methods in BIM-based Applications – a Review\",\"authors\":\"Barbara Strug, Grazyna Slusarczyk\",\"doi\":\"10.1142/s2196888823300028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a survey of machine learning (ML) methods used in applications dedicated to the building and construction industry. A building information modeling (BIM) model, being a database system for civil engineering data, is presented. A representative selection of methods and applications is described. The aim of this paper is to facilitate the continuation of research efforts and to encourage bigger participation of database system researchers in the field of civil engineering.\",\"PeriodicalId\":30898,\"journal\":{\"name\":\"Vietnam Journal of Computer Science\",\"volume\":\"14 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vietnam Journal of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2196888823300028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam Journal of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2196888823300028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了用于建筑和建筑行业应用的机器学习(ML)方法的调查。提出了一种建筑信息模型(BIM)模型,即土木工程数据的数据库系统。描述了方法和应用的代表性选择。本文的目的是促进研究工作的继续,并鼓励数据库系统研究人员更大程度地参与土木工程领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning Methods in BIM-based Applications – a Review
This paper presents a survey of machine learning (ML) methods used in applications dedicated to the building and construction industry. A building information modeling (BIM) model, being a database system for civil engineering data, is presented. A representative selection of methods and applications is described. The aim of this paper is to facilitate the continuation of research efforts and to encourage bigger participation of database system researchers in the field of civil engineering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
26
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信