随机反馈移位寄存器和最大周期长度的极限分布

IF 0.9 4区 数学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Richard Arratia, E. Rodney Canfield, Alfred W. Hales
{"title":"随机反馈移位寄存器和最大周期长度的极限分布","authors":"Richard Arratia, E. Rodney Canfield, Alfred W. Hales","doi":"10.1017/s0963548323000020","DOIUrl":null,"url":null,"abstract":"Abstract For a random binary noncoalescing feedback shift register of width $n$ , with all $2^{2^{n-1}}$ possible feedback functions $f$ equally likely, the process of long cycle lengths, scaled by dividing by $N=2^n$ , converges in distribution to the same Poisson–Dirichlet limit as holds for random permutations in $\\mathcal{S}_N$ , with all $N!$ possible permutations equally likely. Such behaviour was conjectured by Golomb, Welch and Goldstein in 1959.","PeriodicalId":10513,"journal":{"name":"Combinatorics, Probability & Computing","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Random feedback shift registers and the limit distribution for largest cycle lengths\",\"authors\":\"Richard Arratia, E. Rodney Canfield, Alfred W. Hales\",\"doi\":\"10.1017/s0963548323000020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For a random binary noncoalescing feedback shift register of width $n$ , with all $2^{2^{n-1}}$ possible feedback functions $f$ equally likely, the process of long cycle lengths, scaled by dividing by $N=2^n$ , converges in distribution to the same Poisson–Dirichlet limit as holds for random permutations in $\\\\mathcal{S}_N$ , with all $N!$ possible permutations equally likely. Such behaviour was conjectured by Golomb, Welch and Goldstein in 1959.\",\"PeriodicalId\":10513,\"journal\":{\"name\":\"Combinatorics, Probability & Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability & Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0963548323000020\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability & Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548323000020","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

摘要对于宽度为$n$的随机二元非聚结反馈移位寄存器,当所有$2^{2^{n-1}}$可能的反馈函数$f$等可能时,长周期长度的过程在分布上收敛于与$\mathcal{S}_N$中的随机排列相同的泊松-狄利克雷极限,且所有$n !$种可能的排列等可能。1959年,Golomb、Welch和Goldstein推测出了这种行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Random feedback shift registers and the limit distribution for largest cycle lengths
Abstract For a random binary noncoalescing feedback shift register of width $n$ , with all $2^{2^{n-1}}$ possible feedback functions $f$ equally likely, the process of long cycle lengths, scaled by dividing by $N=2^n$ , converges in distribution to the same Poisson–Dirichlet limit as holds for random permutations in $\mathcal{S}_N$ , with all $N!$ possible permutations equally likely. Such behaviour was conjectured by Golomb, Welch and Goldstein in 1959.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combinatorics, Probability & Computing
Combinatorics, Probability & Computing 数学-计算机:理论方法
CiteScore
2.40
自引率
11.10%
发文量
33
审稿时长
6-12 weeks
期刊介绍: Published bimonthly, Combinatorics, Probability & Computing is devoted to the three areas of combinatorics, probability theory and theoretical computer science. Topics covered include classical and algebraic graph theory, extremal set theory, matroid theory, probabilistic methods and random combinatorial structures; combinatorial probability and limit theorems for random combinatorial structures; the theory of algorithms (including complexity theory), randomised algorithms, probabilistic analysis of algorithms, computational learning theory and optimisation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信