{"title":"单回归格兰杰因果估计量的抽样分布","authors":"A J Gutknecht, L Barnett","doi":"10.1093/biomet/asad009","DOIUrl":null,"url":null,"abstract":"Summary The single-regression Granger–Geweke causality estimator has previously been shown to solve known problems associated with the more conventional likelihood ratio estimator; however, its sampling distribution has remained unknown. We show that, under the null hypothesis of vanishing Granger causality, the single-regression estimator converges to a generalized χ2 distribution, which is well approximated by a Γ distribution. We show that this holds too for Geweke’s spectral causality averaged over a given frequency band, and derive explicit expressions for the generalized χ2 and Γ-approximation parameters in both cases. We present a Neyman–Pearson test based on the single-regression estimators, and discuss how it may be deployed in empirical scenarios. We outline how our analysis may be extended to the conditional case, point-frequency spectral Granger causality and the important case of state-space Granger causality.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sampling distribution for single-regression Granger causality estimators\",\"authors\":\"A J Gutknecht, L Barnett\",\"doi\":\"10.1093/biomet/asad009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary The single-regression Granger–Geweke causality estimator has previously been shown to solve known problems associated with the more conventional likelihood ratio estimator; however, its sampling distribution has remained unknown. We show that, under the null hypothesis of vanishing Granger causality, the single-regression estimator converges to a generalized χ2 distribution, which is well approximated by a Γ distribution. We show that this holds too for Geweke’s spectral causality averaged over a given frequency band, and derive explicit expressions for the generalized χ2 and Γ-approximation parameters in both cases. We present a Neyman–Pearson test based on the single-regression estimators, and discuss how it may be deployed in empirical scenarios. We outline how our analysis may be extended to the conditional case, point-frequency spectral Granger causality and the important case of state-space Granger causality.\",\"PeriodicalId\":9001,\"journal\":{\"name\":\"Biometrika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/biomet/asad009\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/biomet/asad009","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Sampling distribution for single-regression Granger causality estimators
Summary The single-regression Granger–Geweke causality estimator has previously been shown to solve known problems associated with the more conventional likelihood ratio estimator; however, its sampling distribution has remained unknown. We show that, under the null hypothesis of vanishing Granger causality, the single-regression estimator converges to a generalized χ2 distribution, which is well approximated by a Γ distribution. We show that this holds too for Geweke’s spectral causality averaged over a given frequency band, and derive explicit expressions for the generalized χ2 and Γ-approximation parameters in both cases. We present a Neyman–Pearson test based on the single-regression estimators, and discuss how it may be deployed in empirical scenarios. We outline how our analysis may be extended to the conditional case, point-frequency spectral Granger causality and the important case of state-space Granger causality.
期刊介绍:
Biometrika is primarily a journal of statistics in which emphasis is placed on papers containing original theoretical contributions of direct or potential value in applications. From time to time, papers in bordering fields are also published.