单回归格兰杰因果估计量的抽样分布

IF 2.4 2区 数学 Q2 BIOLOGY
Biometrika Pub Date : 2023-02-14 DOI:10.1093/biomet/asad009
A J Gutknecht, L Barnett
{"title":"单回归格兰杰因果估计量的抽样分布","authors":"A J Gutknecht, L Barnett","doi":"10.1093/biomet/asad009","DOIUrl":null,"url":null,"abstract":"Summary The single-regression Granger–Geweke causality estimator has previously been shown to solve known problems associated with the more conventional likelihood ratio estimator; however, its sampling distribution has remained unknown. We show that, under the null hypothesis of vanishing Granger causality, the single-regression estimator converges to a generalized χ2 distribution, which is well approximated by a Γ distribution. We show that this holds too for Geweke’s spectral causality averaged over a given frequency band, and derive explicit expressions for the generalized χ2 and Γ-approximation parameters in both cases. We present a Neyman–Pearson test based on the single-regression estimators, and discuss how it may be deployed in empirical scenarios. We outline how our analysis may be extended to the conditional case, point-frequency spectral Granger causality and the important case of state-space Granger causality.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":"518 1","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sampling distribution for single-regression Granger causality estimators\",\"authors\":\"A J Gutknecht, L Barnett\",\"doi\":\"10.1093/biomet/asad009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary The single-regression Granger–Geweke causality estimator has previously been shown to solve known problems associated with the more conventional likelihood ratio estimator; however, its sampling distribution has remained unknown. We show that, under the null hypothesis of vanishing Granger causality, the single-regression estimator converges to a generalized χ2 distribution, which is well approximated by a Γ distribution. We show that this holds too for Geweke’s spectral causality averaged over a given frequency band, and derive explicit expressions for the generalized χ2 and Γ-approximation parameters in both cases. We present a Neyman–Pearson test based on the single-regression estimators, and discuss how it may be deployed in empirical scenarios. We outline how our analysis may be extended to the conditional case, point-frequency spectral Granger causality and the important case of state-space Granger causality.\",\"PeriodicalId\":9001,\"journal\":{\"name\":\"Biometrika\",\"volume\":\"518 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/biomet/asad009\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/biomet/asad009","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

单回归Granger-Geweke因果关系估计量先前已被证明可以解决与更传统的似然比估计量相关的已知问题;然而,其抽样分布仍然未知。我们证明,在格兰杰因果关系消失的零假设下,单回归估计量收敛于广义χ2分布,该分布可以很好地近似于Γ分布。我们证明这也适用于给定频带上平均的Geweke频谱因果关系,并推导出两种情况下广义χ2和Γ-approximation参数的显式表达式。我们提出了一个基于单回归估计的内曼-皮尔逊检验,并讨论了如何在经验场景中部署它。我们概述了如何将我们的分析扩展到条件情况,点频谱格兰杰因果关系和状态空间格兰杰因果关系的重要情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sampling distribution for single-regression Granger causality estimators
Summary The single-regression Granger–Geweke causality estimator has previously been shown to solve known problems associated with the more conventional likelihood ratio estimator; however, its sampling distribution has remained unknown. We show that, under the null hypothesis of vanishing Granger causality, the single-regression estimator converges to a generalized χ2 distribution, which is well approximated by a Γ distribution. We show that this holds too for Geweke’s spectral causality averaged over a given frequency band, and derive explicit expressions for the generalized χ2 and Γ-approximation parameters in both cases. We present a Neyman–Pearson test based on the single-regression estimators, and discuss how it may be deployed in empirical scenarios. We outline how our analysis may be extended to the conditional case, point-frequency spectral Granger causality and the important case of state-space Granger causality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrika
Biometrika 生物-生物学
CiteScore
5.50
自引率
3.70%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Biometrika is primarily a journal of statistics in which emphasis is placed on papers containing original theoretical contributions of direct or potential value in applications. From time to time, papers in bordering fields are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信