用语法进化构造神经网络训练的边界

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Ioannis G. Tsoulos, Alexandros Tzallas, Evangelos Karvounis
{"title":"用语法进化构造神经网络训练的边界","authors":"Ioannis G. Tsoulos, Alexandros Tzallas, Evangelos Karvounis","doi":"10.3390/computers12110226","DOIUrl":null,"url":null,"abstract":"Artificial neural networks are widely established models of computational intelligence that have been tested for their effectiveness in a variety of real-world applications. These models require a set of parameters to be fitted through the use of an optimization technique. However, an issue that researchers often face is finding an efficient range of values for the parameters of the artificial neural network. This paper proposes an innovative technique for generating a promising range of values for the parameters of the artificial neural network. Finding the value field is conducted by a series of rules for partitioning the original set of values or expanding it, the rules of which are generated using grammatical evolution. After finding a promising interval of values, any optimization technique such as a genetic algorithm can be used to train the artificial neural network on that interval of values. The new technique was tested on a wide range of problems from the relevant literature and the results were extremely promising.","PeriodicalId":46292,"journal":{"name":"Computers","volume":"47 5","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructing the Bounds for Neural Network Training Using Grammatical Evolution\",\"authors\":\"Ioannis G. Tsoulos, Alexandros Tzallas, Evangelos Karvounis\",\"doi\":\"10.3390/computers12110226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial neural networks are widely established models of computational intelligence that have been tested for their effectiveness in a variety of real-world applications. These models require a set of parameters to be fitted through the use of an optimization technique. However, an issue that researchers often face is finding an efficient range of values for the parameters of the artificial neural network. This paper proposes an innovative technique for generating a promising range of values for the parameters of the artificial neural network. Finding the value field is conducted by a series of rules for partitioning the original set of values or expanding it, the rules of which are generated using grammatical evolution. After finding a promising interval of values, any optimization technique such as a genetic algorithm can be used to train the artificial neural network on that interval of values. The new technique was tested on a wide range of problems from the relevant literature and the results were extremely promising.\",\"PeriodicalId\":46292,\"journal\":{\"name\":\"Computers\",\"volume\":\"47 5\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/computers12110226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computers12110226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

人工神经网络是广泛建立的计算智能模型,已经在各种现实世界的应用中测试了它们的有效性。这些模型需要通过使用优化技术来拟合一组参数。然而,研究人员经常面临的一个问题是如何为人工神经网络的参数找到一个有效的取值范围。本文提出了一种为人工神经网络的参数生成有希望的取值范围的创新技术。查找值字段是通过一系列规则对原始值集进行划分或扩展,这些规则是通过语法演化生成的。在找到一个有希望的值区间后,可以使用任何优化技术(如遗传算法)在该值区间上训练人工神经网络。从相关文献中对新技术进行了广泛的问题测试,结果非常有希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constructing the Bounds for Neural Network Training Using Grammatical Evolution
Artificial neural networks are widely established models of computational intelligence that have been tested for their effectiveness in a variety of real-world applications. These models require a set of parameters to be fitted through the use of an optimization technique. However, an issue that researchers often face is finding an efficient range of values for the parameters of the artificial neural network. This paper proposes an innovative technique for generating a promising range of values for the parameters of the artificial neural network. Finding the value field is conducted by a series of rules for partitioning the original set of values or expanding it, the rules of which are generated using grammatical evolution. After finding a promising interval of values, any optimization technique such as a genetic algorithm can be used to train the artificial neural network on that interval of values. The new technique was tested on a wide range of problems from the relevant literature and the results were extremely promising.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers
Computers COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
5.40
自引率
3.60%
发文量
153
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信