在全农场优化模型中体现天气年变化:四阶段单序列与八阶段多序列比较

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Michael Young, John Young, Ross S. Kingwell, Philip E. Vercoe
{"title":"在全农场优化模型中体现天气年变化:四阶段单序列与八阶段多序列比较","authors":"Michael Young,&nbsp;John Young,&nbsp;Ross S. Kingwell,&nbsp;Philip E. Vercoe","doi":"10.1111/1467-8489.12539","DOIUrl":null,"url":null,"abstract":"<p>The trade-off between accuracy and complexity is a common issue faced in farm systems analysis. To provide insights into the importance of representing weather-year sequence in farm modelling, two whole-farm optimisation models are constructed and applied to a mixed enterprise farming system in a subregion of Western Australia. The frameworks are (i) four-stage single-sequence stochastic programming with recourse (4-SPR) to capture weather-year variation and management tactics tailored to each weather-year and (ii) eight-stage multi-sequence stochastic programming with recourse (8-SPR) to outline weather-year sequences and management tactics tailored to particular weather-year sequences. Results show that single-year stochastic programming generates similar expected profit and strategic management as multi-year stochastic programming. However, optimal tactical farm management is affected by the outcome of the previous year. Tactical decision-making in response to the outcome of the preceding weather-year increases profitability by 14%. Technology changes over the last decade, particularly the increase in computer speed and computational power, increase the ease of construction and application of the 4-SPR and 8-SPR frameworks. Nonetheless, choosing which framework is best to apply to a particular issue or opportunity remains a challenge.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1467-8489.12539","citationCount":"0","resultStr":"{\"title\":\"Representing weather-year variation in whole-farm optimisation models: Four-stage single-sequence vs eight-stage multi-sequence\",\"authors\":\"Michael Young,&nbsp;John Young,&nbsp;Ross S. Kingwell,&nbsp;Philip E. Vercoe\",\"doi\":\"10.1111/1467-8489.12539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The trade-off between accuracy and complexity is a common issue faced in farm systems analysis. To provide insights into the importance of representing weather-year sequence in farm modelling, two whole-farm optimisation models are constructed and applied to a mixed enterprise farming system in a subregion of Western Australia. The frameworks are (i) four-stage single-sequence stochastic programming with recourse (4-SPR) to capture weather-year variation and management tactics tailored to each weather-year and (ii) eight-stage multi-sequence stochastic programming with recourse (8-SPR) to outline weather-year sequences and management tactics tailored to particular weather-year sequences. Results show that single-year stochastic programming generates similar expected profit and strategic management as multi-year stochastic programming. However, optimal tactical farm management is affected by the outcome of the previous year. Tactical decision-making in response to the outcome of the preceding weather-year increases profitability by 14%. Technology changes over the last decade, particularly the increase in computer speed and computational power, increase the ease of construction and application of the 4-SPR and 8-SPR frameworks. Nonetheless, choosing which framework is best to apply to a particular issue or opportunity remains a challenge.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1467-8489.12539\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1467-8489.12539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1467-8489.12539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

准确性与复杂性之间的权衡是农场系统分析中面临的共同问题。为了深入了解在农场建模中体现天气年序列的重要性,我们构建了两个全农场优化模型,并将其应用于西澳大利亚一个次区域的混合企业农业系统。这两个框架分别是:(i) 带追索权的四阶段单序列随机程序设计(4-SPR),用于捕捉天气年变化和针对每个天气年的管理策略;(ii) 带追索权的八阶段多序列随机程序设计(8-SPR),用于概述天气年序列和针对特定天气年序列的管理策略。结果表明,单年随机规划产生的预期利润和战略管理与多年随机规划相似。然而,农场的最佳战术管理受到前一年结果的影响。根据上一天气年的结果做出的战术决策使利润率提高了 14%。过去十年的技术变革,特别是计算机速度和计算能力的提高,使 4-SPR 和 8-SPR 框架的构建和应用更加容易。然而,选择哪种框架最适合应用于特定问题或机遇仍然是一项挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Representing weather-year variation in whole-farm optimisation models: Four-stage single-sequence vs eight-stage multi-sequence

Representing weather-year variation in whole-farm optimisation models: Four-stage single-sequence vs eight-stage multi-sequence

The trade-off between accuracy and complexity is a common issue faced in farm systems analysis. To provide insights into the importance of representing weather-year sequence in farm modelling, two whole-farm optimisation models are constructed and applied to a mixed enterprise farming system in a subregion of Western Australia. The frameworks are (i) four-stage single-sequence stochastic programming with recourse (4-SPR) to capture weather-year variation and management tactics tailored to each weather-year and (ii) eight-stage multi-sequence stochastic programming with recourse (8-SPR) to outline weather-year sequences and management tactics tailored to particular weather-year sequences. Results show that single-year stochastic programming generates similar expected profit and strategic management as multi-year stochastic programming. However, optimal tactical farm management is affected by the outcome of the previous year. Tactical decision-making in response to the outcome of the preceding weather-year increases profitability by 14%. Technology changes over the last decade, particularly the increase in computer speed and computational power, increase the ease of construction and application of the 4-SPR and 8-SPR frameworks. Nonetheless, choosing which framework is best to apply to a particular issue or opportunity remains a challenge.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信