Mikhail Shur, Mikhail Strelets, Philippe Spalart, Andrey Travin
{"title":"MD 30P-30N三元翼型的先进分离涡模拟","authors":"Mikhail Shur, Mikhail Strelets, Philippe Spalart, Andrey Travin","doi":"10.1080/14685248.2023.2278506","DOIUrl":null,"url":null,"abstract":"AbstractAn experimental version in the Detached-Eddy Simulation (DES) family (called Advanced DES or ADES) is introduced and tested on a geometry that is fairly complex but two-dimensional. The essential change in ADES is that the user is given control of the regions treated with full turbulence modelling (RANS) and those treated with Large-Eddy Simulation (LES). This zonal character makes the approach more powerful, but less practical, so that in its current state it is not ready for industrial CFD. The grid requirements of the two regions are very different, and multi-block grid structure is natural. Another key feature is a Volumetric Synthetic Turbulence Generator (VSTG), installed to feed the LES region with viable resolved turbulence, so that the resolved Reynolds stresses rapidly substitute for the modelled Reynolds stresses present in the RANS region. The VSTG operates in a volume, rather than on a surface and can be active in attached boundary layers, at a trailing edge, or after separation. The well-known McDonnell-Douglas 30P-30N airfoil is simulated with periodic lateral boundary conditions. The VSTG is successful, and the desired nature of simulation is obtained in each region. ADES involves zonal decisions, but appears robust. An inertial range is clearly indicated in frequency spectra. A grid-refinement study is included, as well as variations in lateral domain size and STG positions; this led to a matrix of 11 simulations. Cases are shown at four angles of attack and with three RANS models in addition to ADES. Pressure and friction distributions and velocity and shear stress profiles are compared in detail. The prospects for an evolution of ADES into a practical routine approach in the long term are discussed.KEYWORDS: Advanced detached-eddy simulationmulti-element wings3-element High-lift airfoils AcknowledgementsAll the computations were conducted with the use of the HP computing facilities of the Peter the Great Saint-Petersburg Polytechnic University (http://www.spbstu.ru; accessed on August 24 2023) within the framework of the scientific program of the National Center for Physics and Mathematics, section #2 ‘Mathematical modeling on Zetta-scale and Exa-scale Supercomputers. Stage 2023-2025’.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by Ministry of Science and Higher Education of the Russian Federation: [Grant Number 075-15-2022-311].","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced detached-eddy simulation of the MD 30P-30N three-element airfoil\",\"authors\":\"Mikhail Shur, Mikhail Strelets, Philippe Spalart, Andrey Travin\",\"doi\":\"10.1080/14685248.2023.2278506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractAn experimental version in the Detached-Eddy Simulation (DES) family (called Advanced DES or ADES) is introduced and tested on a geometry that is fairly complex but two-dimensional. The essential change in ADES is that the user is given control of the regions treated with full turbulence modelling (RANS) and those treated with Large-Eddy Simulation (LES). This zonal character makes the approach more powerful, but less practical, so that in its current state it is not ready for industrial CFD. The grid requirements of the two regions are very different, and multi-block grid structure is natural. Another key feature is a Volumetric Synthetic Turbulence Generator (VSTG), installed to feed the LES region with viable resolved turbulence, so that the resolved Reynolds stresses rapidly substitute for the modelled Reynolds stresses present in the RANS region. The VSTG operates in a volume, rather than on a surface and can be active in attached boundary layers, at a trailing edge, or after separation. The well-known McDonnell-Douglas 30P-30N airfoil is simulated with periodic lateral boundary conditions. The VSTG is successful, and the desired nature of simulation is obtained in each region. ADES involves zonal decisions, but appears robust. An inertial range is clearly indicated in frequency spectra. A grid-refinement study is included, as well as variations in lateral domain size and STG positions; this led to a matrix of 11 simulations. Cases are shown at four angles of attack and with three RANS models in addition to ADES. Pressure and friction distributions and velocity and shear stress profiles are compared in detail. The prospects for an evolution of ADES into a practical routine approach in the long term are discussed.KEYWORDS: Advanced detached-eddy simulationmulti-element wings3-element High-lift airfoils AcknowledgementsAll the computations were conducted with the use of the HP computing facilities of the Peter the Great Saint-Petersburg Polytechnic University (http://www.spbstu.ru; accessed on August 24 2023) within the framework of the scientific program of the National Center for Physics and Mathematics, section #2 ‘Mathematical modeling on Zetta-scale and Exa-scale Supercomputers. Stage 2023-2025’.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by Ministry of Science and Higher Education of the Russian Federation: [Grant Number 075-15-2022-311].\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/14685248.2023.2278506\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/14685248.2023.2278506","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Advanced detached-eddy simulation of the MD 30P-30N three-element airfoil
AbstractAn experimental version in the Detached-Eddy Simulation (DES) family (called Advanced DES or ADES) is introduced and tested on a geometry that is fairly complex but two-dimensional. The essential change in ADES is that the user is given control of the regions treated with full turbulence modelling (RANS) and those treated with Large-Eddy Simulation (LES). This zonal character makes the approach more powerful, but less practical, so that in its current state it is not ready for industrial CFD. The grid requirements of the two regions are very different, and multi-block grid structure is natural. Another key feature is a Volumetric Synthetic Turbulence Generator (VSTG), installed to feed the LES region with viable resolved turbulence, so that the resolved Reynolds stresses rapidly substitute for the modelled Reynolds stresses present in the RANS region. The VSTG operates in a volume, rather than on a surface and can be active in attached boundary layers, at a trailing edge, or after separation. The well-known McDonnell-Douglas 30P-30N airfoil is simulated with periodic lateral boundary conditions. The VSTG is successful, and the desired nature of simulation is obtained in each region. ADES involves zonal decisions, but appears robust. An inertial range is clearly indicated in frequency spectra. A grid-refinement study is included, as well as variations in lateral domain size and STG positions; this led to a matrix of 11 simulations. Cases are shown at four angles of attack and with three RANS models in addition to ADES. Pressure and friction distributions and velocity and shear stress profiles are compared in detail. The prospects for an evolution of ADES into a practical routine approach in the long term are discussed.KEYWORDS: Advanced detached-eddy simulationmulti-element wings3-element High-lift airfoils AcknowledgementsAll the computations were conducted with the use of the HP computing facilities of the Peter the Great Saint-Petersburg Polytechnic University (http://www.spbstu.ru; accessed on August 24 2023) within the framework of the scientific program of the National Center for Physics and Mathematics, section #2 ‘Mathematical modeling on Zetta-scale and Exa-scale Supercomputers. Stage 2023-2025’.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by Ministry of Science and Higher Education of the Russian Federation: [Grant Number 075-15-2022-311].
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.