{"title":"实线的拟等距组不能有效地作用于实线上","authors":"Shengkui Ye, Yanxin Zhao","doi":"10.2140/agt.2023.23.3835","DOIUrl":null,"url":null,"abstract":"We prove that the group $\\mathrm{QI}^{+}(\\mathbb{R})$ of orientation-preserving quasi-isometries of the real line is a left-orderable, non-simple group, which cannot act effectively on the real line $\\mathbb{R}.$","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The group of quasi-isometries of the real line cannot act effectively on the line\",\"authors\":\"Shengkui Ye, Yanxin Zhao\",\"doi\":\"10.2140/agt.2023.23.3835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the group $\\\\mathrm{QI}^{+}(\\\\mathbb{R})$ of orientation-preserving quasi-isometries of the real line is a left-orderable, non-simple group, which cannot act effectively on the real line $\\\\mathbb{R}.$\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/agt.2023.23.3835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/agt.2023.23.3835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The group of quasi-isometries of the real line cannot act effectively on the line
We prove that the group $\mathrm{QI}^{+}(\mathbb{R})$ of orientation-preserving quasi-isometries of the real line is a left-orderable, non-simple group, which cannot act effectively on the real line $\mathbb{R}.$