Salamat Ali, Awais Ahmad, Iftikhar Hussain, Syed Shoaib Ahmad Shah, Muhammad Sufyan Javed, Shafqat Ali, Asad Ali, Muhammad Sufyan Javed
{"title":"基于mxenes的储能与能量转换装置的实验与理论研究","authors":"Salamat Ali, Awais Ahmad, Iftikhar Hussain, Syed Shoaib Ahmad Shah, Muhammad Sufyan Javed, Shafqat Ali, Asad Ali, Muhammad Sufyan Javed","doi":"10.56946/jce.v2i2.214","DOIUrl":null,"url":null,"abstract":"Transition metal carbides, nitrides, and carbonitrides (MXenes) have become an appealing framework for developing various energy applications. MXenes with van der Waals (vdW) interactions are facile, highly efficient, affordable, and self-assembled features that improve energy density. MXenes exhibit large surface area, high electric conductivity, and excellent electrochemical characteristics for various energy applications. This review summarizes and emphasizes the current developments in MXene with improved performance for energy storage or conversion devices, including supercapacitors (SCs), various types of rechargeable batteries (RBs), solar cells, and fuel cells. We discuss the crystal structures of MXenes properties of MXenes and briefly discuss them for different types of energy applications. Finally, the critical outlook and perspective for the MXene progress for applications in energy applications are also described.","PeriodicalId":29792,"journal":{"name":"Journal of Chemistry and Environment","volume":"53 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Experimental and Theoretical Aspects of MXenes-Based Energy Storage and Energy Conversion Devices\",\"authors\":\"Salamat Ali, Awais Ahmad, Iftikhar Hussain, Syed Shoaib Ahmad Shah, Muhammad Sufyan Javed, Shafqat Ali, Asad Ali, Muhammad Sufyan Javed\",\"doi\":\"10.56946/jce.v2i2.214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transition metal carbides, nitrides, and carbonitrides (MXenes) have become an appealing framework for developing various energy applications. MXenes with van der Waals (vdW) interactions are facile, highly efficient, affordable, and self-assembled features that improve energy density. MXenes exhibit large surface area, high electric conductivity, and excellent electrochemical characteristics for various energy applications. This review summarizes and emphasizes the current developments in MXene with improved performance for energy storage or conversion devices, including supercapacitors (SCs), various types of rechargeable batteries (RBs), solar cells, and fuel cells. We discuss the crystal structures of MXenes properties of MXenes and briefly discuss them for different types of energy applications. Finally, the critical outlook and perspective for the MXene progress for applications in energy applications are also described.\",\"PeriodicalId\":29792,\"journal\":{\"name\":\"Journal of Chemistry and Environment\",\"volume\":\"53 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemistry and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56946/jce.v2i2.214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemistry and Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56946/jce.v2i2.214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental and Theoretical Aspects of MXenes-Based Energy Storage and Energy Conversion Devices
Transition metal carbides, nitrides, and carbonitrides (MXenes) have become an appealing framework for developing various energy applications. MXenes with van der Waals (vdW) interactions are facile, highly efficient, affordable, and self-assembled features that improve energy density. MXenes exhibit large surface area, high electric conductivity, and excellent electrochemical characteristics for various energy applications. This review summarizes and emphasizes the current developments in MXene with improved performance for energy storage or conversion devices, including supercapacitors (SCs), various types of rechargeable batteries (RBs), solar cells, and fuel cells. We discuss the crystal structures of MXenes properties of MXenes and briefly discuss them for different types of energy applications. Finally, the critical outlook and perspective for the MXene progress for applications in energy applications are also described.
期刊介绍:
Journal of Chemistry and Environment (ISSN: 2959-0132) is a peer-reviewed, open-access international journal that publishes original research and reviews in the fields of chemistry and protecting our environment for the future in an ongoing way. Our central goal is to provide a hub for researchers working across all subjects to present their discoveries, and to be a forum for the discussion of the important issues in the field. All scales of studies and analysis, from impactful fundamental advances in chemistry to interdisciplinary research across physical chemistry, organic chemistry, inorganic chemistry, biochemistry, chemical engineering, and environmental chemistry disciplines are welcomed. All manuscripts must be prepared in English and are subject to a rigorous and fair peer-review process. Accepted papers will appear online within 3 weeks followed by printed hard copies.
Note: There are no Article Publication Charges. (100% waived). Welcome to submit your Mini reviews, full reviews, and research articles.
Journal of Chemistry and Environment aims to publish high-quality research in the following areas: (Topics include, but are not limited to, the following)
• Physical, organic, inorganic & analytical chemistry
• Biochemistry & medicinal chemistry
• Environmental chemistry & environmental impacts of energy technologies
• Chemical physics, material & computational chemistry
• Catalysis, electrocatalysis & photocatalysis
• Energy, fuel cells & batteries
Journal of Chemistry and Environment publishes:
• Full papers
• Reviews
• Minireviews