3个编织结中1个的upsilon不变量

IF 0.6 3区 数学 Q3 MATHEMATICS
Paula Truöl
{"title":"3个编织结中1个的upsilon不变量","authors":"Paula Truöl","doi":"10.2140/agt.2023.23.3763","DOIUrl":null,"url":null,"abstract":"We provide explicit formulas for the integer-valued smooth concordance invariant $\\upsilon(K) = \\Upsilon_K(1)$ for every 3-braid knot $K$. We determine this invariant, which was defined by Ozsvath, Stipsicz and Szabo, by constructing cobordisms between 3-braid knots and (connected sums of) torus knots. As an application, we show that for positive 3-braid knots $K$ several alternating distances all equal the sum $g(K) + \\upsilon(K)$, where $g(K)$ denotes the 3-genus of $K$. In particular, we compute the alternation number, the dealternating number and the Turaev genus for all positive 3-braid knots. We also provide upper and lower bounds on the alternation number and dealternating number of every 3-braid knot which differ by 1.","PeriodicalId":50826,"journal":{"name":"Algebraic and Geometric Topology","volume":"35 3","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The upsilon invariant at 1 of 3–braid knots\",\"authors\":\"Paula Truöl\",\"doi\":\"10.2140/agt.2023.23.3763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide explicit formulas for the integer-valued smooth concordance invariant $\\\\upsilon(K) = \\\\Upsilon_K(1)$ for every 3-braid knot $K$. We determine this invariant, which was defined by Ozsvath, Stipsicz and Szabo, by constructing cobordisms between 3-braid knots and (connected sums of) torus knots. As an application, we show that for positive 3-braid knots $K$ several alternating distances all equal the sum $g(K) + \\\\upsilon(K)$, where $g(K)$ denotes the 3-genus of $K$. In particular, we compute the alternation number, the dealternating number and the Turaev genus for all positive 3-braid knots. We also provide upper and lower bounds on the alternation number and dealternating number of every 3-braid knot which differ by 1.\",\"PeriodicalId\":50826,\"journal\":{\"name\":\"Algebraic and Geometric Topology\",\"volume\":\"35 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic and Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/agt.2023.23.3763\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic and Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/agt.2023.23.3763","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

对于每一个3-辫结$K$,我们给出了整数值光滑协调不变量$\upsilon(K) = \Upsilon_K(1)$的显式公式。我们通过构造3-辫结和环面结(连通和)之间的协点来确定这个由Ozsvath, Stipsicz和Szabo定义的不变量。作为一个应用,我们证明了对于正的3-辫结$K$几个交替距离都等于$g(K) + $ upsilon(K)$的和,其中$g(K)$表示$K$的3属。特别地,我们计算了所有正3-辫结的交替数、去交替数和Turaev属。我们还给出了每个3编结交替数和不交替数相差1的上界和下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The upsilon invariant at 1 of 3–braid knots
We provide explicit formulas for the integer-valued smooth concordance invariant $\upsilon(K) = \Upsilon_K(1)$ for every 3-braid knot $K$. We determine this invariant, which was defined by Ozsvath, Stipsicz and Szabo, by constructing cobordisms between 3-braid knots and (connected sums of) torus knots. As an application, we show that for positive 3-braid knots $K$ several alternating distances all equal the sum $g(K) + \upsilon(K)$, where $g(K)$ denotes the 3-genus of $K$. In particular, we compute the alternation number, the dealternating number and the Turaev genus for all positive 3-braid knots. We also provide upper and lower bounds on the alternation number and dealternating number of every 3-braid knot which differ by 1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Algebraic and Geometric Topology is a fully refereed journal covering all of topology, broadly understood.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信