{"title":"3个编织结中1个的upsilon不变量","authors":"Paula Truöl","doi":"10.2140/agt.2023.23.3763","DOIUrl":null,"url":null,"abstract":"We provide explicit formulas for the integer-valued smooth concordance invariant $\\upsilon(K) = \\Upsilon_K(1)$ for every 3-braid knot $K$. We determine this invariant, which was defined by Ozsvath, Stipsicz and Szabo, by constructing cobordisms between 3-braid knots and (connected sums of) torus knots. As an application, we show that for positive 3-braid knots $K$ several alternating distances all equal the sum $g(K) + \\upsilon(K)$, where $g(K)$ denotes the 3-genus of $K$. In particular, we compute the alternation number, the dealternating number and the Turaev genus for all positive 3-braid knots. We also provide upper and lower bounds on the alternation number and dealternating number of every 3-braid knot which differ by 1.","PeriodicalId":50826,"journal":{"name":"Algebraic and Geometric Topology","volume":"35 3","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The upsilon invariant at 1 of 3–braid knots\",\"authors\":\"Paula Truöl\",\"doi\":\"10.2140/agt.2023.23.3763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide explicit formulas for the integer-valued smooth concordance invariant $\\\\upsilon(K) = \\\\Upsilon_K(1)$ for every 3-braid knot $K$. We determine this invariant, which was defined by Ozsvath, Stipsicz and Szabo, by constructing cobordisms between 3-braid knots and (connected sums of) torus knots. As an application, we show that for positive 3-braid knots $K$ several alternating distances all equal the sum $g(K) + \\\\upsilon(K)$, where $g(K)$ denotes the 3-genus of $K$. In particular, we compute the alternation number, the dealternating number and the Turaev genus for all positive 3-braid knots. We also provide upper and lower bounds on the alternation number and dealternating number of every 3-braid knot which differ by 1.\",\"PeriodicalId\":50826,\"journal\":{\"name\":\"Algebraic and Geometric Topology\",\"volume\":\"35 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic and Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/agt.2023.23.3763\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic and Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/agt.2023.23.3763","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
We provide explicit formulas for the integer-valued smooth concordance invariant $\upsilon(K) = \Upsilon_K(1)$ for every 3-braid knot $K$. We determine this invariant, which was defined by Ozsvath, Stipsicz and Szabo, by constructing cobordisms between 3-braid knots and (connected sums of) torus knots. As an application, we show that for positive 3-braid knots $K$ several alternating distances all equal the sum $g(K) + \upsilon(K)$, where $g(K)$ denotes the 3-genus of $K$. In particular, we compute the alternation number, the dealternating number and the Turaev genus for all positive 3-braid knots. We also provide upper and lower bounds on the alternation number and dealternating number of every 3-braid knot which differ by 1.