{"title":"n层拓扑模形式的连接模型","authors":"Lennart Meier","doi":"10.2140/agt.2023.23.3553","DOIUrl":null,"url":null,"abstract":"The goal of this article is to construct and study connective versions of topological modular forms of higher level like $\\mathrm{tmf}_1(n)$. In particular, we use them to realize Hirzebruch's level-$n$ genus as a map of ring spectra.","PeriodicalId":50826,"journal":{"name":"Algebraic and Geometric Topology","volume":"35 4","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Connective models for topological modular forms of level n\",\"authors\":\"Lennart Meier\",\"doi\":\"10.2140/agt.2023.23.3553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this article is to construct and study connective versions of topological modular forms of higher level like $\\\\mathrm{tmf}_1(n)$. In particular, we use them to realize Hirzebruch's level-$n$ genus as a map of ring spectra.\",\"PeriodicalId\":50826,\"journal\":{\"name\":\"Algebraic and Geometric Topology\",\"volume\":\"35 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic and Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/agt.2023.23.3553\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic and Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/agt.2023.23.3553","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Connective models for topological modular forms of level n
The goal of this article is to construct and study connective versions of topological modular forms of higher level like $\mathrm{tmf}_1(n)$. In particular, we use them to realize Hirzebruch's level-$n$ genus as a map of ring spectra.