卷积神经网络和胶囊网络算法在传统房屋类型分类中的比较

Teknika Pub Date : 2023-11-06 DOI:10.34148/teknika.v12i3.702
Yosefina Finsensia Riti, Yulia Wahyuningsih, Josephine Roosandriantini, Paulus William Siswanto
{"title":"卷积神经网络和胶囊网络算法在传统房屋类型分类中的比较","authors":"Yosefina Finsensia Riti, Yulia Wahyuningsih, Josephine Roosandriantini, Paulus William Siswanto","doi":"10.34148/teknika.v12i3.702","DOIUrl":null,"url":null,"abstract":"Warisan budaya merupakan salah satu bagian yang penting dalam budaya Indonesia dan perlu dilestarikan keberadaanya, salah satu warisan budaya yang perlu dilestarikan yaitu Rumah adat. Informasi terkait rumah adat juga cenderung dicari oleh masyarakat untuk kepentingan pendidikan dalam dunia pengenalan budaya, arsitektur, maupun dalam bidang pariwisata. Hingga saat ini masih banyak daerah di Indonesia yang masih memiliki rumah adatnya dengan tujuan untuk mempertahankan nilai budaya, sebagai tempat pertemuan acara adat, maupun sebagai objek wisata. Salah satunya adalah Provinsi Nusa Tenggara Timur (NTT) yang memiliki beragam rumah adat seperti Sao Ngada (Suku Bajawa), Sao Ria (Suku Ende), Ume Kbubu (Suku Timor), Sao Ata Mosa Lakitana (Sumba), dan Mbaru Niang (Suku Wae Rebo). Keanekagaraman bentuk, kemiripan material penyusun, dan kemiripan bangunan dapat membuat sebagian masyarakat awam kesulitan dalam membedakan jenis atau nama antara rumah adat yang satu dengan rumah adat yang lain. Oleh karena itu diperlukan teknologi digital yang dapat mengindentifikasi dan mengklasifikasikan rumah adat, sehingga dapat membantu wisatawan, maupun masyarakat umum yang mempelajari seputar rumah adat dalam membedakan jenis rumah adat tertentu. Dalam Penelitian ini model deep learning diterapkan untuk identifikasi dan klasifikasi rumah adat, dengan menggunakan algoritma Convolutional Neural Network (CNN) dan Capsule Networks (CapsNet). Penelitian ini bertujuan membandingkan algoritma deep learning, CNN menggunakan arsitektur Resnet50V2 dan CapsNet, dimana dataset yang digunakan terdiri dari 500 data rumah adat di NTT. Hasil penelitian menunjukkan bahwa CNN memiliki nilai akurasi sekitar 98% dengan nilai loss sekitar 0,72, sedangkan CapsNet memiliki nilai akurasi sekitar 72% dengan nilai loss sekitar 1,73%. Berdasarkan hasil klasifikasi tersebut dalam kasus ini, disimpulkan bahwa CNN lebih baik dalam mengklasifikasikan objek rumah adat dibandingkan dengan CapsNet. Oleh karena itu untuk pekerjaan lebih lanjut dapat dilakukan perbaikan parameter tuning untuk algoritma CapsNet dan juga dapat mengimplementasikan CNN dalam pembuatan aplikasi untuk identifikasi dan klasifikasi objek rumah adat sehingga dapat membantu Masyarakat umum dalam membedakan jenis rumah adat melalui aplikasi tersebut.","PeriodicalId":52620,"journal":{"name":"Teknika","volume":"170 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perbandingan Algoritma Convolutional Neural Netwok dan Capsule Network Dalam Klasifikasi Jenis Rumah Adat\",\"authors\":\"Yosefina Finsensia Riti, Yulia Wahyuningsih, Josephine Roosandriantini, Paulus William Siswanto\",\"doi\":\"10.34148/teknika.v12i3.702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Warisan budaya merupakan salah satu bagian yang penting dalam budaya Indonesia dan perlu dilestarikan keberadaanya, salah satu warisan budaya yang perlu dilestarikan yaitu Rumah adat. Informasi terkait rumah adat juga cenderung dicari oleh masyarakat untuk kepentingan pendidikan dalam dunia pengenalan budaya, arsitektur, maupun dalam bidang pariwisata. Hingga saat ini masih banyak daerah di Indonesia yang masih memiliki rumah adatnya dengan tujuan untuk mempertahankan nilai budaya, sebagai tempat pertemuan acara adat, maupun sebagai objek wisata. Salah satunya adalah Provinsi Nusa Tenggara Timur (NTT) yang memiliki beragam rumah adat seperti Sao Ngada (Suku Bajawa), Sao Ria (Suku Ende), Ume Kbubu (Suku Timor), Sao Ata Mosa Lakitana (Sumba), dan Mbaru Niang (Suku Wae Rebo). Keanekagaraman bentuk, kemiripan material penyusun, dan kemiripan bangunan dapat membuat sebagian masyarakat awam kesulitan dalam membedakan jenis atau nama antara rumah adat yang satu dengan rumah adat yang lain. Oleh karena itu diperlukan teknologi digital yang dapat mengindentifikasi dan mengklasifikasikan rumah adat, sehingga dapat membantu wisatawan, maupun masyarakat umum yang mempelajari seputar rumah adat dalam membedakan jenis rumah adat tertentu. Dalam Penelitian ini model deep learning diterapkan untuk identifikasi dan klasifikasi rumah adat, dengan menggunakan algoritma Convolutional Neural Network (CNN) dan Capsule Networks (CapsNet). Penelitian ini bertujuan membandingkan algoritma deep learning, CNN menggunakan arsitektur Resnet50V2 dan CapsNet, dimana dataset yang digunakan terdiri dari 500 data rumah adat di NTT. Hasil penelitian menunjukkan bahwa CNN memiliki nilai akurasi sekitar 98% dengan nilai loss sekitar 0,72, sedangkan CapsNet memiliki nilai akurasi sekitar 72% dengan nilai loss sekitar 1,73%. Berdasarkan hasil klasifikasi tersebut dalam kasus ini, disimpulkan bahwa CNN lebih baik dalam mengklasifikasikan objek rumah adat dibandingkan dengan CapsNet. Oleh karena itu untuk pekerjaan lebih lanjut dapat dilakukan perbaikan parameter tuning untuk algoritma CapsNet dan juga dapat mengimplementasikan CNN dalam pembuatan aplikasi untuk identifikasi dan klasifikasi objek rumah adat sehingga dapat membantu Masyarakat umum dalam membedakan jenis rumah adat melalui aplikasi tersebut.\",\"PeriodicalId\":52620,\"journal\":{\"name\":\"Teknika\",\"volume\":\"170 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Teknika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34148/teknika.v12i3.702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Teknika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34148/teknika.v12i3.702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

文化遗产是印尼文化中重要的一部分,需要保护它的生存,文化遗产之一是海关。与本土家庭相关的信息也倾向于为文化、建筑和旅游等领域的教育利益而向公众寻求。到目前为止,印尼许多地区仍然拥有自己的文化遗产,无论是文化会议场所还是旅游景点。其中一个省是东努萨省(NTT),那里有各种各样的部落,如Sao Ngada (Bajawa)、Sao Ria (Ende)、Ume Kbubu(东帝汶部落)、Sao Ata Mosa Lakitana (Sumba)和Mbaru Niang (Wae Rebo部落)。地区性的异化、编译材料的相似性和建筑的相似性可能会使一些普通市民难以区分这些传统房屋和其他传统房屋的类型或名称。因此,需要数字技术来识别和分类海关,这可以帮助游客,也可以帮助熟悉海关的普通市民区分特定类型。在本研究中,深度学习模型使用有线神经网络(CNN)和Capsule Networks (CapsNet)的算法应用于海关的识别和分类。这项研究的目的是比较深度学习算法,CNN使用了renet50v2的架构和CapsNet,其中使用的数据包括NTT的500个传统家庭数据。研究表明,CNN的准确率约为98%,损失值约为0.72,而CapsNet的准确率约为72%,损失值约为1.73%。根据在这种情况下的分类结果,得出结论,CNN对海关对象的分类比CapsNet更好。因此,可以对CapsNet算法进行进一步的调谐参数改进,并可以在CNN的应用程序构建中执行CNN,以识别和分类传统家庭的对象,从而帮助普通公众通过这些应用程序区分传统家庭类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Perbandingan Algoritma Convolutional Neural Netwok dan Capsule Network Dalam Klasifikasi Jenis Rumah Adat
Warisan budaya merupakan salah satu bagian yang penting dalam budaya Indonesia dan perlu dilestarikan keberadaanya, salah satu warisan budaya yang perlu dilestarikan yaitu Rumah adat. Informasi terkait rumah adat juga cenderung dicari oleh masyarakat untuk kepentingan pendidikan dalam dunia pengenalan budaya, arsitektur, maupun dalam bidang pariwisata. Hingga saat ini masih banyak daerah di Indonesia yang masih memiliki rumah adatnya dengan tujuan untuk mempertahankan nilai budaya, sebagai tempat pertemuan acara adat, maupun sebagai objek wisata. Salah satunya adalah Provinsi Nusa Tenggara Timur (NTT) yang memiliki beragam rumah adat seperti Sao Ngada (Suku Bajawa), Sao Ria (Suku Ende), Ume Kbubu (Suku Timor), Sao Ata Mosa Lakitana (Sumba), dan Mbaru Niang (Suku Wae Rebo). Keanekagaraman bentuk, kemiripan material penyusun, dan kemiripan bangunan dapat membuat sebagian masyarakat awam kesulitan dalam membedakan jenis atau nama antara rumah adat yang satu dengan rumah adat yang lain. Oleh karena itu diperlukan teknologi digital yang dapat mengindentifikasi dan mengklasifikasikan rumah adat, sehingga dapat membantu wisatawan, maupun masyarakat umum yang mempelajari seputar rumah adat dalam membedakan jenis rumah adat tertentu. Dalam Penelitian ini model deep learning diterapkan untuk identifikasi dan klasifikasi rumah adat, dengan menggunakan algoritma Convolutional Neural Network (CNN) dan Capsule Networks (CapsNet). Penelitian ini bertujuan membandingkan algoritma deep learning, CNN menggunakan arsitektur Resnet50V2 dan CapsNet, dimana dataset yang digunakan terdiri dari 500 data rumah adat di NTT. Hasil penelitian menunjukkan bahwa CNN memiliki nilai akurasi sekitar 98% dengan nilai loss sekitar 0,72, sedangkan CapsNet memiliki nilai akurasi sekitar 72% dengan nilai loss sekitar 1,73%. Berdasarkan hasil klasifikasi tersebut dalam kasus ini, disimpulkan bahwa CNN lebih baik dalam mengklasifikasikan objek rumah adat dibandingkan dengan CapsNet. Oleh karena itu untuk pekerjaan lebih lanjut dapat dilakukan perbaikan parameter tuning untuk algoritma CapsNet dan juga dapat mengimplementasikan CNN dalam pembuatan aplikasi untuk identifikasi dan klasifikasi objek rumah adat sehingga dapat membantu Masyarakat umum dalam membedakan jenis rumah adat melalui aplikasi tersebut.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
22
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信