{"title":"关于一些p微分分级连杆同调,ⅱ","authors":"You Qi, Joshua Sussan","doi":"10.2140/agt.2023.23.3357","DOIUrl":null,"url":null,"abstract":"In arXiv:2009.06498, a link invariant categorifying the Jones polynomial at a $2p$th root of unity, where $p$ is an odd prime, was constructed. This categorification utilized an $N=2$ specialization of a differential introduced by Cautis. Here we give a family of link homologies where the Cautis differential is specialized to a positive integer of the form $N=kp+2$. When $k$ is even, all these link homologies categorify the Jones polynomial evaluated at a $2p$th root of unity, but they are non-isomorphic invariants.","PeriodicalId":50826,"journal":{"name":"Algebraic and Geometric Topology","volume":"3 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On some p–differential graded link homologies, II\",\"authors\":\"You Qi, Joshua Sussan\",\"doi\":\"10.2140/agt.2023.23.3357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In arXiv:2009.06498, a link invariant categorifying the Jones polynomial at a $2p$th root of unity, where $p$ is an odd prime, was constructed. This categorification utilized an $N=2$ specialization of a differential introduced by Cautis. Here we give a family of link homologies where the Cautis differential is specialized to a positive integer of the form $N=kp+2$. When $k$ is even, all these link homologies categorify the Jones polynomial evaluated at a $2p$th root of unity, but they are non-isomorphic invariants.\",\"PeriodicalId\":50826,\"journal\":{\"name\":\"Algebraic and Geometric Topology\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic and Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/agt.2023.23.3357\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic and Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/agt.2023.23.3357","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
In arXiv:2009.06498, a link invariant categorifying the Jones polynomial at a $2p$th root of unity, where $p$ is an odd prime, was constructed. This categorification utilized an $N=2$ specialization of a differential introduced by Cautis. Here we give a family of link homologies where the Cautis differential is specialized to a positive integer of the form $N=kp+2$. When $k$ is even, all these link homologies categorify the Jones polynomial evaluated at a $2p$th root of unity, but they are non-isomorphic invariants.