关于一些p微分分级连杆同调,ⅱ

IF 0.6 3区 数学 Q3 MATHEMATICS
You Qi, Joshua Sussan
{"title":"关于一些p微分分级连杆同调,ⅱ","authors":"You Qi, Joshua Sussan","doi":"10.2140/agt.2023.23.3357","DOIUrl":null,"url":null,"abstract":"In arXiv:2009.06498, a link invariant categorifying the Jones polynomial at a $2p$th root of unity, where $p$ is an odd prime, was constructed. This categorification utilized an $N=2$ specialization of a differential introduced by Cautis. Here we give a family of link homologies where the Cautis differential is specialized to a positive integer of the form $N=kp+2$. When $k$ is even, all these link homologies categorify the Jones polynomial evaluated at a $2p$th root of unity, but they are non-isomorphic invariants.","PeriodicalId":50826,"journal":{"name":"Algebraic and Geometric Topology","volume":"3 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On some p–differential graded link homologies, II\",\"authors\":\"You Qi, Joshua Sussan\",\"doi\":\"10.2140/agt.2023.23.3357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In arXiv:2009.06498, a link invariant categorifying the Jones polynomial at a $2p$th root of unity, where $p$ is an odd prime, was constructed. This categorification utilized an $N=2$ specialization of a differential introduced by Cautis. Here we give a family of link homologies where the Cautis differential is specialized to a positive integer of the form $N=kp+2$. When $k$ is even, all these link homologies categorify the Jones polynomial evaluated at a $2p$th root of unity, but they are non-isomorphic invariants.\",\"PeriodicalId\":50826,\"journal\":{\"name\":\"Algebraic and Geometric Topology\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic and Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/agt.2023.23.3357\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic and Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/agt.2023.23.3357","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
On some p–differential graded link homologies, II
In arXiv:2009.06498, a link invariant categorifying the Jones polynomial at a $2p$th root of unity, where $p$ is an odd prime, was constructed. This categorification utilized an $N=2$ specialization of a differential introduced by Cautis. Here we give a family of link homologies where the Cautis differential is specialized to a positive integer of the form $N=kp+2$. When $k$ is even, all these link homologies categorify the Jones polynomial evaluated at a $2p$th root of unity, but they are non-isomorphic invariants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Algebraic and Geometric Topology is a fully refereed journal covering all of topology, broadly understood.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信