有限域上$2$-超不可约多项式

Bober, Jonathan W., Du, Lara, Fretwell, Dan, Kopp, Gene S., Wooley, Trevor D.
{"title":"有限域上$2$-超不可约多项式","authors":"Bober, Jonathan W., Du, Lara, Fretwell, Dan, Kopp, Gene S., Wooley, Trevor D.","doi":"10.48550/arxiv.2309.15304","DOIUrl":null,"url":null,"abstract":"We investigate $k$-superirreducible polynomials, by which we mean irreducible polynomials that remain irreducible under any polynomial substitution of positive degree at most $k$. Let $\\mathbb F$ be a finite field of characteristic $p$. We show that no $2$-superirreducible polynomials exist in $\\mathbb F[t]$ when $p=2$ and that no such polynomials of odd degree exist when $p$ is odd. We address the remaining case in which $p$ is odd and the polynomials have even degree by giving an explicit formula for the number of monic 2-superirreducible polynomials having even degree $d$. This formula is analogous to that given by Gauss for the number of monic irreducible polynomials of given degree over a finite field. We discuss the associated asymptotic behaviour when either the degree of the polynomial or the size of the finite field tends to infinity.","PeriodicalId":496270,"journal":{"name":"arXiv (Cornell University)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On $2$-superirreducible polynomials over finite fields\",\"authors\":\"Bober, Jonathan W., Du, Lara, Fretwell, Dan, Kopp, Gene S., Wooley, Trevor D.\",\"doi\":\"10.48550/arxiv.2309.15304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate $k$-superirreducible polynomials, by which we mean irreducible polynomials that remain irreducible under any polynomial substitution of positive degree at most $k$. Let $\\\\mathbb F$ be a finite field of characteristic $p$. We show that no $2$-superirreducible polynomials exist in $\\\\mathbb F[t]$ when $p=2$ and that no such polynomials of odd degree exist when $p$ is odd. We address the remaining case in which $p$ is odd and the polynomials have even degree by giving an explicit formula for the number of monic 2-superirreducible polynomials having even degree $d$. This formula is analogous to that given by Gauss for the number of monic irreducible polynomials of given degree over a finite field. We discuss the associated asymptotic behaviour when either the degree of the polynomial or the size of the finite field tends to infinity.\",\"PeriodicalId\":496270,\"journal\":{\"name\":\"arXiv (Cornell University)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv (Cornell University)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arxiv.2309.15304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv (Cornell University)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arxiv.2309.15304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了$k$-超不可约多项式,它是指在任何多项式替换最多$k$的正次下仍然不可约的不可约多项式。设$\mathbb F$是特征$p$的有限域。证明了$\mathbb F[t]$中,当$p=2$时,不存在$2$-上不可约多项式;当$p$为奇数次时,不存在$2$-上不可约多项式。我们通过给出具有偶数次$d$的单2-超不可约多项式的数目的显式公式来解决p$为奇数且多项式具有偶数次$d$的剩余情况。这个公式与高斯在有限域上给出的给定次元不可约多项式个数的公式类似。讨论了当多项式的阶数或有限域的大小趋近于无穷大时的相关渐近性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On $2$-superirreducible polynomials over finite fields
We investigate $k$-superirreducible polynomials, by which we mean irreducible polynomials that remain irreducible under any polynomial substitution of positive degree at most $k$. Let $\mathbb F$ be a finite field of characteristic $p$. We show that no $2$-superirreducible polynomials exist in $\mathbb F[t]$ when $p=2$ and that no such polynomials of odd degree exist when $p$ is odd. We address the remaining case in which $p$ is odd and the polynomials have even degree by giving an explicit formula for the number of monic 2-superirreducible polynomials having even degree $d$. This formula is analogous to that given by Gauss for the number of monic irreducible polynomials of given degree over a finite field. We discuss the associated asymptotic behaviour when either the degree of the polynomial or the size of the finite field tends to infinity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信