通过自然振动频率的变化来控制永久冻土上建筑物和结构的技术状况(根据桩型建筑的地震监测-诺里尔斯克文化宫)

E.E. Kosyakina, A.V. Liseikin, P.V. Gromyko, V.S. Seleznev
{"title":"通过自然振动频率的变化来控制永久冻土上建筑物和结构的技术状况(根据桩型建筑的地震监测-诺里尔斯克文化宫)","authors":"E.E. Kosyakina, A.V. Liseikin, P.V. Gromyko, V.S. Seleznev","doi":"10.35540/2686-7907.2023.3.03","DOIUrl":null,"url":null,"abstract":"The relationship between temperature fluctuations and changes in natural frequencies of a piletype engineering structure located on permafrost soils is investigated in connection with the development of methods for monitoring the technical condition of similar structures. The object of the study is the Palace of Culture of the polar branch of PJSC MMC Norilsk Nickel, located in Norilsk, where in recent years the thawing of the soils has a potential threat to the stability of engineering structures. The basic values of the frequencies of natural oscillations of the building were determined in August 2021 by the method of coherent reconstruction of the fields of standing waves and are 3.0, 3.7, 4.7 Hz on the short axis and 3.5 and 5.2 Hz on the long axis. The current (daily) frequency values are determined with an error of no more than 0.01 Hz from the amplitude spectra of seismic noise recordings (without active sources), which were obtained during continuous seismic monitoring from the end of August 2021 to the beginning of September 2022. From comparing the changes in the frequencies of natural oscillations with fluctuations in ambient temperature, it follows that during the year the frequencies change significantly (in winter their values are 11–12% higher than in summer), presumably due to defrosting/ freezing of the upper part of the soil. Against the background of this change, local fluctuations in frequency values were revealed due to cooling/ heating of the material of the building mainly at a positive ambient temperature (frequencies increase in direct proportion to temperature within 5–7%). According to the analysis of monitoring data after the annual cycle, the natural frequencies of the building in August 2021 and 2022 are not equal (the difference is up to 1.7%), which is presumably explained by the different depth of ground defrosting in the summer. To assess the impact of this phenomenon on the technical condition of the building, it is necessary to continue monitoring, first of all, to obtain data on changes in the natural frequ","PeriodicalId":52612,"journal":{"name":"Rossiiskii seismologicheskii zhurnal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Control of the technical condition of buildings and structures on permafrost soils by the changes in the frequencies of natural vibrations (according to seismic monitoring of a pile-type building – the Palace of culture of Norilsk)\",\"authors\":\"E.E. Kosyakina, A.V. Liseikin, P.V. Gromyko, V.S. Seleznev\",\"doi\":\"10.35540/2686-7907.2023.3.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The relationship between temperature fluctuations and changes in natural frequencies of a piletype engineering structure located on permafrost soils is investigated in connection with the development of methods for monitoring the technical condition of similar structures. The object of the study is the Palace of Culture of the polar branch of PJSC MMC Norilsk Nickel, located in Norilsk, where in recent years the thawing of the soils has a potential threat to the stability of engineering structures. The basic values of the frequencies of natural oscillations of the building were determined in August 2021 by the method of coherent reconstruction of the fields of standing waves and are 3.0, 3.7, 4.7 Hz on the short axis and 3.5 and 5.2 Hz on the long axis. The current (daily) frequency values are determined with an error of no more than 0.01 Hz from the amplitude spectra of seismic noise recordings (without active sources), which were obtained during continuous seismic monitoring from the end of August 2021 to the beginning of September 2022. From comparing the changes in the frequencies of natural oscillations with fluctuations in ambient temperature, it follows that during the year the frequencies change significantly (in winter their values are 11–12% higher than in summer), presumably due to defrosting/ freezing of the upper part of the soil. Against the background of this change, local fluctuations in frequency values were revealed due to cooling/ heating of the material of the building mainly at a positive ambient temperature (frequencies increase in direct proportion to temperature within 5–7%). According to the analysis of monitoring data after the annual cycle, the natural frequencies of the building in August 2021 and 2022 are not equal (the difference is up to 1.7%), which is presumably explained by the different depth of ground defrosting in the summer. To assess the impact of this phenomenon on the technical condition of the building, it is necessary to continue monitoring, first of all, to obtain data on changes in the natural frequ\",\"PeriodicalId\":52612,\"journal\":{\"name\":\"Rossiiskii seismologicheskii zhurnal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rossiiskii seismologicheskii zhurnal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35540/2686-7907.2023.3.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rossiiskii seismologicheskii zhurnal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35540/2686-7907.2023.3.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

结合类似结构技术状态监测方法的发展,研究了位于多年冻土上的桩式工程结构的温度波动与固有频率变化之间的关系。该研究的对象是位于诺里尔斯克的PJSC MMC诺里尔斯克镍公司极地分公司的文化宫,近年来土壤的融化对工程结构的稳定性构成了潜在的威胁。2021年8月,通过驻波场相干重建方法确定了该建筑自然振荡频率的基本值,短轴为3.0、3.7、4.7 Hz,长轴为3.5、5.2 Hz。从2021年8月底到2022年9月初的连续地震监测中获得的地震噪声记录的振幅谱,以不超过0.01 Hz的误差确定了当前(每日)频率值。通过比较自然振荡频率的变化与环境温度的波动,可以得出结论,在一年中,频率变化显著(冬季其值比夏季高11-12%),可能是由于土壤上部的解冻/冻结。在这种变化的背景下,频率值的局部波动是由于建筑材料的冷却/加热主要是在正环境温度下(频率与温度成正比,在5-7%之间)。根据年周期后的监测数据分析,该建筑在2021年8月和2022年8月的固有频率不相等(差异高达1.7%),推测这是由于夏季地面除霜深度不同造成的。为了评估这种现象对建筑物技术状况的影响,有必要继续监测,首先,获得自然频率变化的数据
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Control of the technical condition of buildings and structures on permafrost soils by the changes in the frequencies of natural vibrations (according to seismic monitoring of a pile-type building – the Palace of culture of Norilsk)
The relationship between temperature fluctuations and changes in natural frequencies of a piletype engineering structure located on permafrost soils is investigated in connection with the development of methods for monitoring the technical condition of similar structures. The object of the study is the Palace of Culture of the polar branch of PJSC MMC Norilsk Nickel, located in Norilsk, where in recent years the thawing of the soils has a potential threat to the stability of engineering structures. The basic values of the frequencies of natural oscillations of the building were determined in August 2021 by the method of coherent reconstruction of the fields of standing waves and are 3.0, 3.7, 4.7 Hz on the short axis and 3.5 and 5.2 Hz on the long axis. The current (daily) frequency values are determined with an error of no more than 0.01 Hz from the amplitude spectra of seismic noise recordings (without active sources), which were obtained during continuous seismic monitoring from the end of August 2021 to the beginning of September 2022. From comparing the changes in the frequencies of natural oscillations with fluctuations in ambient temperature, it follows that during the year the frequencies change significantly (in winter their values are 11–12% higher than in summer), presumably due to defrosting/ freezing of the upper part of the soil. Against the background of this change, local fluctuations in frequency values were revealed due to cooling/ heating of the material of the building mainly at a positive ambient temperature (frequencies increase in direct proportion to temperature within 5–7%). According to the analysis of monitoring data after the annual cycle, the natural frequencies of the building in August 2021 and 2022 are not equal (the difference is up to 1.7%), which is presumably explained by the different depth of ground defrosting in the summer. To assess the impact of this phenomenon on the technical condition of the building, it is necessary to continue monitoring, first of all, to obtain data on changes in the natural frequ
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
16
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信