可行在轻质泡沫混凝土中使用解尿菌来提高其强度

IF 2.2 4区 工程技术 Q2 ENGINEERING, CIVIL
Siong Kang Lim, Cher Siang Tan, Yee Ling Lee, Ming Han Lim, Ming Kun Yew
{"title":"可行在轻质泡沫混凝土中使用解尿菌来提高其强度","authors":"Siong Kang Lim, Cher Siang Tan, Yee Ling Lee, Ming Han Lim, Ming Kun Yew","doi":"10.1080/19648189.2023.2259971","DOIUrl":null,"url":null,"abstract":"AbstractThis study investigates the feasibility of utilizing ureolytic-type bacteria in lightweight foamed concrete to enhance its compressive strength. Previous research focused on microorganisms in different types of concrete, but there is a lack of study on microorganism incorporation in low-density foamed concrete. Bacillus megaterium was introduced in the production of microbial-based lightweight foamed concrete, inducing mineral precipitation through microbial activities. Four mix proportions were prepared: a control mix (LFC-CM) and LFCs incorporated with varying concentrations of B. megaterium. All specimens underwent water curing. Results show significant improvements in compressive, flexural, and splitting tensile strengths of microbial-based LFC compared to control samples due to microbial-induced calcite precipitation. This research has implications for sustainable construction materials. The potential future directions include optimizing microbial dosage, exploring different ureolytic bacteria, and investigating the long-term durability and performance of microbial-based lightweight foamed concrete. This study contributes to knowledge on microbial-based construction materials, providing insights for sustainable concrete solutions.Keywords: Bacillus megateriumlightweight foamed concretestrength propertiesmicrobial activitycalcite precipitation AcknowledgementThe authors would like to express their gratitude for the support of the Universiti Tunku Abdul Rahman UTARRF grant vote 6200/LG3 to this study.Geolocation informationThis study was conducted at Universiti Tunku Abdul Rahman (UTAR) Bandar Sungai Long campus with coordinates 3.039805003901911, 101.79425775434476.Disclosure statementNo potential conflict of interest was reported by the authors.Data depositionAll data set is stated in the paperAdditional informationFundingThis work was supported by the Universiti Tunku Abdul Rahman UTARRF grant vote 6200/LG3.","PeriodicalId":11970,"journal":{"name":"European Journal of Environmental and Civil Engineering","volume":"94 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feasible use of ureolytic bacteria in lightweight foamed concrete to enhance its strength\",\"authors\":\"Siong Kang Lim, Cher Siang Tan, Yee Ling Lee, Ming Han Lim, Ming Kun Yew\",\"doi\":\"10.1080/19648189.2023.2259971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractThis study investigates the feasibility of utilizing ureolytic-type bacteria in lightweight foamed concrete to enhance its compressive strength. Previous research focused on microorganisms in different types of concrete, but there is a lack of study on microorganism incorporation in low-density foamed concrete. Bacillus megaterium was introduced in the production of microbial-based lightweight foamed concrete, inducing mineral precipitation through microbial activities. Four mix proportions were prepared: a control mix (LFC-CM) and LFCs incorporated with varying concentrations of B. megaterium. All specimens underwent water curing. Results show significant improvements in compressive, flexural, and splitting tensile strengths of microbial-based LFC compared to control samples due to microbial-induced calcite precipitation. This research has implications for sustainable construction materials. The potential future directions include optimizing microbial dosage, exploring different ureolytic bacteria, and investigating the long-term durability and performance of microbial-based lightweight foamed concrete. This study contributes to knowledge on microbial-based construction materials, providing insights for sustainable concrete solutions.Keywords: Bacillus megateriumlightweight foamed concretestrength propertiesmicrobial activitycalcite precipitation AcknowledgementThe authors would like to express their gratitude for the support of the Universiti Tunku Abdul Rahman UTARRF grant vote 6200/LG3 to this study.Geolocation informationThis study was conducted at Universiti Tunku Abdul Rahman (UTAR) Bandar Sungai Long campus with coordinates 3.039805003901911, 101.79425775434476.Disclosure statementNo potential conflict of interest was reported by the authors.Data depositionAll data set is stated in the paperAdditional informationFundingThis work was supported by the Universiti Tunku Abdul Rahman UTARRF grant vote 6200/LG3.\",\"PeriodicalId\":11970,\"journal\":{\"name\":\"European Journal of Environmental and Civil Engineering\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Environmental and Civil Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19648189.2023.2259971\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Environmental and Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19648189.2023.2259971","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

摘要本研究探讨了在轻质泡沫混凝土中利用溶尿型细菌提高混凝土抗压强度的可行性。以往的研究主要集中在不同类型混凝土中的微生物,而对低密度泡沫混凝土中微生物掺入的研究较少。将巨型芽孢杆菌引入到微生物基轻泡沫混凝土生产中,通过微生物活动诱导矿物沉淀。制备了四种混合比例:对照混合物(LFC-CM)和加入不同浓度巨芽孢杆菌的lfc。所有标本均进行水固化处理。结果表明,与对照样品相比,微生物诱导的方解石沉淀显著提高了基于微生物的LFC的压缩、弯曲和劈裂拉伸强度。本研究对可持续建筑材料具有启示意义。未来潜在的发展方向包括优化微生物用量,探索不同的解尿细菌,以及研究微生物基轻泡沫混凝土的长期耐久性和性能。这项研究有助于了解微生物基建筑材料,为可持续的混凝土解决方案提供见解。关键词:巨型芽孢杆菌轻质泡沫混凝土强度特性微生物活性方解石沉淀感谢Tunku Abdul Rahman UTARRF对本研究的支持,并给予6200/LG3票。本研究在Universiti Tunku Abdul Rahman (UTAR) Bandar Sungai Long校区进行,坐标为3.039805003901911,101.79425775434476。披露声明作者未报告潜在的利益冲突。本研究得到东姑阿卜杜勒拉赫曼大学UTARRF拨款投票6200/LG3的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feasible use of ureolytic bacteria in lightweight foamed concrete to enhance its strength
AbstractThis study investigates the feasibility of utilizing ureolytic-type bacteria in lightweight foamed concrete to enhance its compressive strength. Previous research focused on microorganisms in different types of concrete, but there is a lack of study on microorganism incorporation in low-density foamed concrete. Bacillus megaterium was introduced in the production of microbial-based lightweight foamed concrete, inducing mineral precipitation through microbial activities. Four mix proportions were prepared: a control mix (LFC-CM) and LFCs incorporated with varying concentrations of B. megaterium. All specimens underwent water curing. Results show significant improvements in compressive, flexural, and splitting tensile strengths of microbial-based LFC compared to control samples due to microbial-induced calcite precipitation. This research has implications for sustainable construction materials. The potential future directions include optimizing microbial dosage, exploring different ureolytic bacteria, and investigating the long-term durability and performance of microbial-based lightweight foamed concrete. This study contributes to knowledge on microbial-based construction materials, providing insights for sustainable concrete solutions.Keywords: Bacillus megateriumlightweight foamed concretestrength propertiesmicrobial activitycalcite precipitation AcknowledgementThe authors would like to express their gratitude for the support of the Universiti Tunku Abdul Rahman UTARRF grant vote 6200/LG3 to this study.Geolocation informationThis study was conducted at Universiti Tunku Abdul Rahman (UTAR) Bandar Sungai Long campus with coordinates 3.039805003901911, 101.79425775434476.Disclosure statementNo potential conflict of interest was reported by the authors.Data depositionAll data set is stated in the paperAdditional informationFundingThis work was supported by the Universiti Tunku Abdul Rahman UTARRF grant vote 6200/LG3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Environmental and Civil Engineering
European Journal of Environmental and Civil Engineering ENGINEERING, CIVIL-ENGINEERING, GEOLOGICAL
CiteScore
4.80
自引率
4.80%
发文量
153
审稿时长
6 months
期刊介绍: The European Research Area has now become a reality. The prime objective of the EJECE is to fully document advances in International scientific and technical research in the fields of sustainable construction and soil engineering. In particular regard to the latter, the environmental preservation of natural media (soils and rocks) and the mitigation of soil-related risks are now not only major societal challenges, but they are also the source of scientific and technical developments that could be extremely beneficial.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信