Yan Wu, Mingtao Nie, Xiaolei Ma, Yicong Guo, Xiaoxiong Liu
{"title":"基于协同进化算法的多无人机协同路径规划","authors":"Yan Wu, Mingtao Nie, Xiaolei Ma, Yicong Guo, Xiaoxiong Liu","doi":"10.3390/drones7100606","DOIUrl":null,"url":null,"abstract":"Multi-UAV cooperative path planning is a key technology to carry out multi-UAV tasks, and its research has important practical significance. A multi-UAV cooperative path is a combination of single-UAV paths, so the idea of problem decomposition is effective to deal with multi-UAV cooperative path planning. With this analysis, a multi-UAV cooperative path planning algorithm based on co-evolution optimization was proposed in this paper. Firstly, by analyzing the meaning of multi-UAV cooperative flight, the optimization model of multi-UAV cooperative path planning was given. Secondly, we designed the cost function of multiple UAVs with the penalty function method to deal with multiple constraints and designed two information-sharing strategies to deal with the combination path search between multiple UAVs. The two information-sharing strategies were called the optimal individual selection strategy and the mixed selection strategy. The new cooperative path planning algorithm was presented by combining the above designation and co-evolution algorithm. Finally, the proposed algorithm is applied to a rendezvous task in complex environments and compared with two evolutionary algorithms. The experimental results show that the proposed algorithm can effectively cope with the multi-UAV cooperative path planning problem in complex environments.","PeriodicalId":36448,"journal":{"name":"Drones","volume":"17 1","pages":"0"},"PeriodicalIF":4.4000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Co-Evolutionary Algorithm-Based Multi-Unmanned Aerial Vehicle Cooperative Path Planning\",\"authors\":\"Yan Wu, Mingtao Nie, Xiaolei Ma, Yicong Guo, Xiaoxiong Liu\",\"doi\":\"10.3390/drones7100606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-UAV cooperative path planning is a key technology to carry out multi-UAV tasks, and its research has important practical significance. A multi-UAV cooperative path is a combination of single-UAV paths, so the idea of problem decomposition is effective to deal with multi-UAV cooperative path planning. With this analysis, a multi-UAV cooperative path planning algorithm based on co-evolution optimization was proposed in this paper. Firstly, by analyzing the meaning of multi-UAV cooperative flight, the optimization model of multi-UAV cooperative path planning was given. Secondly, we designed the cost function of multiple UAVs with the penalty function method to deal with multiple constraints and designed two information-sharing strategies to deal with the combination path search between multiple UAVs. The two information-sharing strategies were called the optimal individual selection strategy and the mixed selection strategy. The new cooperative path planning algorithm was presented by combining the above designation and co-evolution algorithm. Finally, the proposed algorithm is applied to a rendezvous task in complex environments and compared with two evolutionary algorithms. The experimental results show that the proposed algorithm can effectively cope with the multi-UAV cooperative path planning problem in complex environments.\",\"PeriodicalId\":36448,\"journal\":{\"name\":\"Drones\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drones\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/drones7100606\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drones","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/drones7100606","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Multi-UAV cooperative path planning is a key technology to carry out multi-UAV tasks, and its research has important practical significance. A multi-UAV cooperative path is a combination of single-UAV paths, so the idea of problem decomposition is effective to deal with multi-UAV cooperative path planning. With this analysis, a multi-UAV cooperative path planning algorithm based on co-evolution optimization was proposed in this paper. Firstly, by analyzing the meaning of multi-UAV cooperative flight, the optimization model of multi-UAV cooperative path planning was given. Secondly, we designed the cost function of multiple UAVs with the penalty function method to deal with multiple constraints and designed two information-sharing strategies to deal with the combination path search between multiple UAVs. The two information-sharing strategies were called the optimal individual selection strategy and the mixed selection strategy. The new cooperative path planning algorithm was presented by combining the above designation and co-evolution algorithm. Finally, the proposed algorithm is applied to a rendezvous task in complex environments and compared with two evolutionary algorithms. The experimental results show that the proposed algorithm can effectively cope with the multi-UAV cooperative path planning problem in complex environments.