含隐吸引子混沌系统的分数阶投影及其无源同步

IF 1.3 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Fernando E. Serrano, Jesus M. Munoz-Pacheco, Marco A. Flores
{"title":"含隐吸引子混沌系统的分数阶投影及其无源同步","authors":"Fernando E. Serrano, Jesus M. Munoz-Pacheco, Marco A. Flores","doi":"10.3389/fams.2023.1267664","DOIUrl":null,"url":null,"abstract":"This paper presents the fractional-order projection of a chaotic system, which delivers a collection of self-excited and hidden chaotic attractors as a function of a single system parameter. Based on an integer-order chaotic system and the proposed transformation, the fractional-order chaotic system obtains when the divergence of integer and fractional vector fields flows in the same direction. Phase portraits, bifurcation diagrams, and Lyapunov exponents validate the chaos generation. Apart from these results, two passivity-based fractional control laws are designed effectively for the integer and fractional-order chaotic systems. In both cases, the synchronization schemes depend on suitable storage functions given by the fractional Lyapunov theory. Several numerical experiments confirm the proposed approach and agree well with the mathematical deductions.","PeriodicalId":36662,"journal":{"name":"Frontiers in Applied Mathematics and Statistics","volume":"57 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional-order projection of a chaotic system with hidden attractors and its passivity-based synchronization\",\"authors\":\"Fernando E. Serrano, Jesus M. Munoz-Pacheco, Marco A. Flores\",\"doi\":\"10.3389/fams.2023.1267664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the fractional-order projection of a chaotic system, which delivers a collection of self-excited and hidden chaotic attractors as a function of a single system parameter. Based on an integer-order chaotic system and the proposed transformation, the fractional-order chaotic system obtains when the divergence of integer and fractional vector fields flows in the same direction. Phase portraits, bifurcation diagrams, and Lyapunov exponents validate the chaos generation. Apart from these results, two passivity-based fractional control laws are designed effectively for the integer and fractional-order chaotic systems. In both cases, the synchronization schemes depend on suitable storage functions given by the fractional Lyapunov theory. Several numerical experiments confirm the proposed approach and agree well with the mathematical deductions.\",\"PeriodicalId\":36662,\"journal\":{\"name\":\"Frontiers in Applied Mathematics and Statistics\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Applied Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fams.2023.1267664\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Applied Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fams.2023.1267664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了一个混沌系统的分数阶投影,它给出了一组自激和隐藏混沌吸引子作为单个系统参数的函数。基于整数阶混沌系统和所提出的变换,得到了整数和分数阶矢量场散度方向相同时的分数阶混沌系统。相肖像,分岔图,和李亚普诺夫指数验证混沌的产生。在此基础上,针对整数阶和分数阶混沌系统,设计了两种基于被动的分数阶控制律。在这两种情况下,同步方案依赖于分数李雅普诺夫理论给出的合适的存储函数。几个数值实验验证了所提出的方法,并与数学推导结果很好地吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional-order projection of a chaotic system with hidden attractors and its passivity-based synchronization
This paper presents the fractional-order projection of a chaotic system, which delivers a collection of self-excited and hidden chaotic attractors as a function of a single system parameter. Based on an integer-order chaotic system and the proposed transformation, the fractional-order chaotic system obtains when the divergence of integer and fractional vector fields flows in the same direction. Phase portraits, bifurcation diagrams, and Lyapunov exponents validate the chaos generation. Apart from these results, two passivity-based fractional control laws are designed effectively for the integer and fractional-order chaotic systems. In both cases, the synchronization schemes depend on suitable storage functions given by the fractional Lyapunov theory. Several numerical experiments confirm the proposed approach and agree well with the mathematical deductions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Applied Mathematics and Statistics
Frontiers in Applied Mathematics and Statistics Mathematics-Statistics and Probability
CiteScore
1.90
自引率
7.10%
发文量
117
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信