磁体形状对风力发电机永磁同步发电机总谐波畸变和齿槽转矩的影响

IF 2.9 4区 环境科学与生态学 Q3 ENERGY & FUELS
Clean Energy Pub Date : 2023-09-26 DOI:10.1093/ce/zkad046
Erol Kurt, Adem Dalcalı
{"title":"磁体形状对风力发电机永磁同步发电机总谐波畸变和齿槽转矩的影响","authors":"Erol Kurt, Adem Dalcalı","doi":"10.1093/ce/zkad046","DOIUrl":null,"url":null,"abstract":"Abstract This paper explores and theoretically reports the effects of different magnet structures on the cogging torque and the total harmonic distortion of the output waveforms from a permanent magnet generator. The generator is a radial flux machine and four different structures are considered for the magnet arrangement in the rotor component and modelled in the Ansys/Maxwell electromagnetic simulation program. This three-phase machine exhibits different behaviours towards various magnet structures, i.e. rectangular, inclined slotted rectangular, skewed double rectangular and inclined slotted skewed double rectangular, respectively. It has been proven by finite element analysis and Fourier analysis that both the cogging and total harmonic distortion values vary significantly for all models. The cogging torque values change in the range of 89.95 to 436.75 mNm and the lowest cogging torque is measured for the inclined slotted skewed double rectangular magnet geometry, while the conventional rectangular magnet geometry yields the worst value with 436.75 mNm. Furthermore, the total harmonic distortion values varies between 1.63 and 3.55 for different magnetic orientations. While the worst total harmonic distortion value is obtained from the inclined slotted rectangular magnet, the best total harmonic distortion is acquired from the skewed double rectangular magnet. All these results will provide scientists and engineers with important information in order to obtain more efficient machines.","PeriodicalId":36703,"journal":{"name":"Clean Energy","volume":"42 1","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of magnet shapes on total harmonic distortion and cogging torque in a permanent magnet synchronous generator for wind turbines\",\"authors\":\"Erol Kurt, Adem Dalcalı\",\"doi\":\"10.1093/ce/zkad046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper explores and theoretically reports the effects of different magnet structures on the cogging torque and the total harmonic distortion of the output waveforms from a permanent magnet generator. The generator is a radial flux machine and four different structures are considered for the magnet arrangement in the rotor component and modelled in the Ansys/Maxwell electromagnetic simulation program. This three-phase machine exhibits different behaviours towards various magnet structures, i.e. rectangular, inclined slotted rectangular, skewed double rectangular and inclined slotted skewed double rectangular, respectively. It has been proven by finite element analysis and Fourier analysis that both the cogging and total harmonic distortion values vary significantly for all models. The cogging torque values change in the range of 89.95 to 436.75 mNm and the lowest cogging torque is measured for the inclined slotted skewed double rectangular magnet geometry, while the conventional rectangular magnet geometry yields the worst value with 436.75 mNm. Furthermore, the total harmonic distortion values varies between 1.63 and 3.55 for different magnetic orientations. While the worst total harmonic distortion value is obtained from the inclined slotted rectangular magnet, the best total harmonic distortion is acquired from the skewed double rectangular magnet. All these results will provide scientists and engineers with important information in order to obtain more efficient machines.\",\"PeriodicalId\":36703,\"journal\":{\"name\":\"Clean Energy\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clean Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ce/zkad046\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clean Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ce/zkad046","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文从理论上研究了不同磁铁结构对永磁发电机齿槽转矩和输出波形总谐波畸变的影响。发电机是一种径向磁通机,转子部件的磁体布置考虑了四种不同的结构,并在Ansys/Maxwell电磁仿真程序中进行了建模。该三相电机分别对矩形、斜槽矩形、斜双矩形、斜槽斜双矩形等不同磁铁结构表现出不同的行为。有限元分析和傅立叶分析表明,各模型的齿槽数和总谐波畸变值变化很大。齿槽转矩在89.95 ~ 436.75 mNm范围内变化,斜槽斜双矩形磁体齿槽转矩最小,常规矩形磁体齿槽转矩最大,为436.75 mNm。不同磁取向的总谐波畸变值在1.63 ~ 3.55之间。斜开槽矩形磁体的总谐波畸变值最差,斜开双矩形磁体的总谐波畸变值最好。所有这些结果将为科学家和工程师提供重要信息,以获得更高效的机器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of magnet shapes on total harmonic distortion and cogging torque in a permanent magnet synchronous generator for wind turbines
Abstract This paper explores and theoretically reports the effects of different magnet structures on the cogging torque and the total harmonic distortion of the output waveforms from a permanent magnet generator. The generator is a radial flux machine and four different structures are considered for the magnet arrangement in the rotor component and modelled in the Ansys/Maxwell electromagnetic simulation program. This three-phase machine exhibits different behaviours towards various magnet structures, i.e. rectangular, inclined slotted rectangular, skewed double rectangular and inclined slotted skewed double rectangular, respectively. It has been proven by finite element analysis and Fourier analysis that both the cogging and total harmonic distortion values vary significantly for all models. The cogging torque values change in the range of 89.95 to 436.75 mNm and the lowest cogging torque is measured for the inclined slotted skewed double rectangular magnet geometry, while the conventional rectangular magnet geometry yields the worst value with 436.75 mNm. Furthermore, the total harmonic distortion values varies between 1.63 and 3.55 for different magnetic orientations. While the worst total harmonic distortion value is obtained from the inclined slotted rectangular magnet, the best total harmonic distortion is acquired from the skewed double rectangular magnet. All these results will provide scientists and engineers with important information in order to obtain more efficient machines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Clean Energy
Clean Energy Environmental Science-Management, Monitoring, Policy and Law
CiteScore
4.00
自引率
13.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信