基于联合仿真方法的机器人末端执行器减振

IF 4.6 Q1 OPTICS
Daixing Lu, Yang Zhang, Junjie Lu
{"title":"基于联合仿真方法的机器人末端执行器减振","authors":"Daixing Lu, Yang Zhang, Junjie Lu","doi":"10.1088/1742-6596/2632/1/012036","DOIUrl":null,"url":null,"abstract":"Abstract Hydraulic cylinder replacement robot as a new type of engineering machinery has been increasingly used, but its end effector encounters vibrations in the process of clamping the object, so the accuracy of disassembling and assembling the cylinder will be reduced, thus reducing the replacement efficiency and affecting the user’s experience. To address this problem, virtual prototyping technology is used to study the cylinder disassembly process under real working conditions. We use the 3D modeling software Solidworks to construct a model of the cylinder replacement robot. After that, kinematic analysis of the model is carried out, then a dynamics model is built in multi-body dynamics simulation software ADAMS to simulate the process of the robot grasping the object, as a consequence, the trajectory of the end effector is calculated. A controlled dynamic model is established with Simulink and Adams by using the co-simulation technique, and optimization is carried out by using the model. Results show that the optimized control parameter can effectively reduce the end effector vibration and improve the stability and accuracy of the work.","PeriodicalId":44008,"journal":{"name":"Journal of Physics-Photonics","volume":"83 3","pages":"0"},"PeriodicalIF":4.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vibration Reduction of Robot End Effector Based on Co-simulation Method\",\"authors\":\"Daixing Lu, Yang Zhang, Junjie Lu\",\"doi\":\"10.1088/1742-6596/2632/1/012036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Hydraulic cylinder replacement robot as a new type of engineering machinery has been increasingly used, but its end effector encounters vibrations in the process of clamping the object, so the accuracy of disassembling and assembling the cylinder will be reduced, thus reducing the replacement efficiency and affecting the user’s experience. To address this problem, virtual prototyping technology is used to study the cylinder disassembly process under real working conditions. We use the 3D modeling software Solidworks to construct a model of the cylinder replacement robot. After that, kinematic analysis of the model is carried out, then a dynamics model is built in multi-body dynamics simulation software ADAMS to simulate the process of the robot grasping the object, as a consequence, the trajectory of the end effector is calculated. A controlled dynamic model is established with Simulink and Adams by using the co-simulation technique, and optimization is carried out by using the model. Results show that the optimized control parameter can effectively reduce the end effector vibration and improve the stability and accuracy of the work.\",\"PeriodicalId\":44008,\"journal\":{\"name\":\"Journal of Physics-Photonics\",\"volume\":\"83 3\",\"pages\":\"0\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics-Photonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1742-6596/2632/1/012036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics-Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1742-6596/2632/1/012036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

液压缸更换机器人作为一种新型的工程机械得到了越来越多的应用,但其末端执行器在夹紧物体的过程中会遇到振动,因此会降低拆卸和组装气缸的精度,从而降低更换效率,影响用户的使用体验。为了解决这一问题,采用虚拟样机技术对实际工况下气缸的拆卸过程进行了研究。利用三维建模软件Solidworks构建了气缸更换机器人的模型。然后对模型进行运动学分析,然后在多体动力学仿真软件ADAMS中建立动力学模型,对机器人抓取物体的过程进行仿真,从而计算出末端执行器的运动轨迹。采用Simulink和Adams联合仿真技术建立了受控动态模型,并利用该模型进行了优化。结果表明,优化后的控制参数能有效降低末端执行器的振动,提高工作的稳定性和精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vibration Reduction of Robot End Effector Based on Co-simulation Method
Abstract Hydraulic cylinder replacement robot as a new type of engineering machinery has been increasingly used, but its end effector encounters vibrations in the process of clamping the object, so the accuracy of disassembling and assembling the cylinder will be reduced, thus reducing the replacement efficiency and affecting the user’s experience. To address this problem, virtual prototyping technology is used to study the cylinder disassembly process under real working conditions. We use the 3D modeling software Solidworks to construct a model of the cylinder replacement robot. After that, kinematic analysis of the model is carried out, then a dynamics model is built in multi-body dynamics simulation software ADAMS to simulate the process of the robot grasping the object, as a consequence, the trajectory of the end effector is calculated. A controlled dynamic model is established with Simulink and Adams by using the co-simulation technique, and optimization is carried out by using the model. Results show that the optimized control parameter can effectively reduce the end effector vibration and improve the stability and accuracy of the work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.70
自引率
0.00%
发文量
27
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信